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Abstract: In this paper we study a deformation of gauge mediated supersymmetry break-

ing in a class of local F-theory GUT models where the scale of supersymmetry breaking

determines the value of the µ term. Geometrically correlating these two scales constrains

the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY break-

ing sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare µ and

Bµ terms. This sector typically breaks supersymmetry at the desired range of energy scales

through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-

Masiero mechanism generates the value µ ∼ 102 − 103 GeV when the hidden sector scale

of supersymmetry breaking is
√

F ∼ 108.5 GeV. Further, the Bµ problem is solved due to

the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY

breaking with the QCD axion, and solve the strong CP problem through an axion with

decay constant fa ∼ MGUT ·µ/Λ, where Λ ∼ 105 GeV is the characteristic scale of gaugino

mass unification in gauge mediated models, and the ratio µ/Λ ∼ MGUT/Mpl ∼ 10−3. We

find fa ∼ 1012 GeV, which is near the high end of the phenomenologically viable window.

Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the

LSP with a mass of about 101−102 MeV, and a bino-like neutralino is (typically) the NLSP

with mass of about 102−103 GeV. Compatibility with electroweak symmetry breaking also

determines the value of tanβ ∼ 30 ± 7.
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1 Introduction

The existence of the string theory landscape with its vast number of different low energy

signatures potentially dilutes the predictive power of string theory. The sheer range of

possibilities presents a challenge to determine which corners of the landscape (if any!) are

consistent with experiment.

Decoupling the dynamics of gauge theory from gravity provides an attractive way to

constrain this problem. Indeed, at energy scales even a few orders of magnitude below the

Planck scale, gravity will most likely play a subdominant role compared to other degrees

of freedom. For considerations at lower energies it is therefore quite natural to restrict

attention to vacua in the landscape with the correct gauge and matter content, deferring

all issues pertaining to gravity to a later stage of analysis. Given the vast size of the

landscape, it is also reasonable to incorporate some additional principles in our search for

vacua which are consistent with observation.

One such constraint is the apparent unification of the gauge coupling constants of

the MSSM at an energy below the Planck scale. Here, it is important to note that the

existence of a Grand Unified Theory (GUT) is in principle compatible with the existence

of a decoupling limit. For example, in minimal realizations of GUTs, the gauge theory

is typically asymptotically free. Indeed, without asymptotic freedom, the UV completion

of the gauge theory would require incorporating gravity into the theory. Moreover, while

string theory can accommodate the generic representations of GUTs, the total matter

content in such models often does not produce an asymptotically free theory. In this

regard, the existence of a decoupling limit is especially helpful in limiting any search for

realistic models.

In string compactifications, the requirement that gravity can in principle decouple

translates into the geometric condition that some of the dimensions of the compactification

can in principle expand to a large size while the GUT model degrees of freedom remain

localized on a compact cycle. Roughly speaking, the decoupling principle separates the

“open string”and “closed string” sectors of the landscape.

In [1, 2], we initiated a study of F-theory GUTs which admit such a decoupling limit.

These local F-theory models provide a surprisingly rigid framework for model building [2].

See see also [3–7] for related work on model building in F-theory. In F-theory, local GUT

models originate from a stack of seven-branes wrapping a del Pezzo surface equipped with

gauge group SU(5), or some larger rank GUT group which contains SU(5). Although the

matter content of these models can in principle originate from either bulk eight-dimensional

fields propagating on the seven-brane, or six-dimensional fields localized at the intersection

of distinct stacks of seven-branes, in minimal SU(5) GUT models, all of the chiral matter

of the MSSM localizes at the intersection of seven-branes along Riemann surfaces in the del

Pezzo surface. The GUT group breaks to the Standard Model gauge group in the presence

of an internal U(1) hypercharge flux through the del Pezzo surface.

As shown in [2], simply achieving the correct matter content of the MSSM through an

appropriate choice of internal fluxes turns out to simultaneously address several puzzles in

four-dimensional GUT models. For example, solving the doublet-triplet splitting problem

– 2 –



J
H
E
P
0
9
(
2
0
0
9
)
0
7
9

via an internal U(1) hyperflux required for GUT group breaking automatically forbids

quartic superpotential terms which can cause rapid proton decay. The presence of this

same hyperflux can also qualitatively explain why the lighter two generations violate the

analogue of the well-known b-τ mass relation. Precisely because this framework is so

rigid, it is also possible to reliably extract predictions for the neutrino masses which are

fortuitiously in accord with current experimental bounds.

To make further contact with observation, any viable model must incorporate a sec-

tor which breaks supersymmetry, and a mediation mechanism which communicates this

to the visible sector. From the perspective of the four-dimensional effective field theory,

this mediation mechanism is likely to originate from gravity/moduli mediation, gauge me-

diation, or some variant of these two basic possibilities.1 Both mediation mechanisms

contain problems, either with correlating the scale of supersymmetry breaking with the

superpotential contribution to the Higgs mass µHuHd known as the µ term, or from large

flavor changing neutral currents (FCNCs). In gravity/moduli mediation scenarios, the µ

problem can be solved via the Giudice-Masiero mechanism [14], but the generic pattern of

soft masses will often generate large FCNCs, which is typically not a problem in models

of gauge mediated supersymmetry breaking. Nevertheless, gravity/moduli mediation has

recently been investigated in F-theory models as in the recent attractive proposal of [5].

See [15–18] and especially [19] for further details on moduli mediation scenarios in type

IIB compactifications.

By contrast, the primary stumbling block to realistic phenomenology in most models

of gauge mediation is the µ/Bµ problem. Indeed, perturbative gauge interactions do not

generate superpotential terms involving the Higgs fields. Precisely because gauge fields

mediate the effects of supersymmetry breaking to the visible sector, correlating the size of

the µ term with supersymmetry breaking remains somewhat obscure in such a scenario.

Logically speaking, however, the values of µ and Bµ may have nothing to do with su-

persymmetry breaking. For example, in [2], exponential wave function suppression near

the GUT model seven-brane could also generate small values for the µ term. Although

this relieves much of the tension present in gauge mediated scenarios, it is also not very

predictive! In this paper, we shall therefore not consider this possibility further.

A central goal of the present paper is to address the µ/Bµ problem in variants of

gauge mediated supersymmetry breaking which can arise in F-theory. Focussing on gauge

mediation is particularly reasonable in the context of decoupling the “open”and “closed”

string sectors of the landscape. However, as explained above, correlating the origin of µ/Bµ

with supersymmetry breaking requires some deformation away from a minimal realization

of the gauge mediation scenario. In fact, we find that solving the µ problem in F-theory

sometimes requires that the mediation mechanism can decouple from gravity.

1It is also possible to consider other scenarios such as anomaly mediation [8, 9] where the scale of

supersymmetry breaking in the hidden sector is typically higher than in gravity/moduli mediation. As

another somewhat related possibility, it is also possible to consider U(1) mediation models as in [10, 11]

and its recent implementation in a compact string based model with F- and D- term mixing [12]. To

mention just one further possibility, D-brane instantons could perhaps provide a more stringy mediation

mechanism [13].
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Φ Hu,Hd Y, Y ′ X

U(1)PQ +1 −2 +2 −4

Table 1. PQ charge assignments for the field content of of an F-theory GUT with a minimal gauge

mediation sector. Here, Φ refers to MSSM chiral superfields other than the Higgs up/down.

Regardless of the mediation mechanism, one natural way to correlate the value of

µ with the scale of supersymmetry breaking is through variants of the Giudice-Masiero

mechanism. In this solution to the µ problem, the Higgs chiral superfields Hu and Hd

couple to a GUT group singlet X through an interaction term of the form:

OX†HuHd
= γ

∫
d4θ

X†HuHd

MX
, (1.1)

where γ is an order one constant which depends on the details of the model, and MX is

roughly the scale at which this operator is generated. When X develops a supersymmetry

breaking vev 〈X〉 = x + θ2F , the resulting contribution to the µ term is γ · F/MX . In

gravity-mediated scenarios, F ∼ 1021 − 1022 GeV2, and MX is identified with the Planck

scale. For lower values of F ≤ 1019 GeV2 consistent with gauge mediation, the induced

value of µ is near the weak scale provided MX is near or below the GUT scale. This curious

numerology has been observed in [20] and has recently formed the basis for the “sweet spot”

model of supersymmetry breaking [21] (also see [22]). See [6] for a recent effort in replicating

the effective field theory of the sweet spot scenario in the context of a local F-theory model.

One of the primary results of this paper is that integrating out the Kaluza-Klein

modes associated with X generates the operator OX†HuHd
with MX near the GUT scale.

To a certain extent, this is to be expected because if this operator is present in a local

model where gravity can in principle decouple, the scale of suppression will be set by the

GUT, rather than Planck scale. As a consequence, the value of F required in gravity

mediated scenarios will generate a value for the µ term which is far too large. Hence,

crude considerations already reveal that in a broad class of models, some variant of gauge

mediation must transmit supersymmetry breaking to the MSSM. As in most perturbatively

realized gauge mediated models, this implies that X must also couple to at least one vector-

like pair of messenger fields Y and Y ′ through the F-term:

OXY Y ′ = λ

∫
d2θXY Y ′. (1.2)

Although different from the models we present, for recent related work on gauge mediated

models of supersymmetry breaking in string theory, see [6, 23–25].

Of course, in order for this variant on the Giudice-Masiero mechanism to solve the µ

problem, additional unwanted contributions to this term must also be absent. For example,

to prevent the presence of a large bare µ term, it is natural for all fields to transform under

a U(1) Peccei-Quinn (PQ) symmetry with charges specified as in table 1. This symmetry

allows all requisite interaction terms of the MSSM as well as the operators OX†HuHd
and

OXY Y ′ , but forbids the typically problematic superpotential terms such as a bare µ term

µHuHd, as well as XHuHd. As explained in [2], the existence of such U(1) symmetries
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is quite common in F-theory compactifications because matter fields originate from the

intersection of distinct stacks of seven-branes.

We also find that the presence of the U(1)PQ symmetry generates additional soft term

contributions beyond those present in a gauge mediated model. This U(1)PQ symmetry is

typically anomalous and is therefore Higgsed at high energies. In this case, heavy U(1)PQ

gauge boson exchange between X and a generic chiral superfield Ψ charged under U(1)PQ

generates the term:

OX†XΨ†Ψ = −4παPQ
eXeΨ

M2
U(1)PQ

∫
d4θX†XΨ†Ψ (1.3)

where in the above, MU(1)PQ
is the mass of the heavy gauge boson which is typically on

the order of the GUT scale, and the e’s denote the U(1)PQ charges of the chiral superfields

X and Ψ. When X develops a supersymmetry breaking vev, this term can also contribute

to the soft mass terms of the Ψ fields. Depending on its precise value, this contribution

can lead to an interesting predictive deformation of the gauge mediation scenario which we

also study.

Although seemingly unrelated, the physics of the X field and the anomalous U(1)PQ

can also solve the strong CP problem. This comes about because in gauge mediated models,

the phase for the scalar component of X couples to the QCD instanton density through

the axion-like coupling:

Lax ⊃ arg x

32π2
εµνρσTrFµνFρσ. (1.4)

If the U(1)PQ symmetry had been non-anomalous, the vev of X would have broken this sym-

metry and the corresponding Goldstone mode arg x would correspond to the longitudinal

component of the massive U(1)PQ gauge boson, thus eliminating arg x as a candidate axion

field. Precisely because this U(1) symmetry is already Higgsed at high scales, a linear com-

bination of arg x with another bulk mode axion can play the role of the QCD axion, solving

the strong CP problem. A variant of this same idea for four-dimensional effective field the-

ories has also appeared in [26], where an additional X field also participates. In that model,

one linear combination of the two phases corresponds to the Goldstone mode of the broken

U(1)PQ symmetry, while another linear combination plays the role of the QCD axion.

As should now be clear, the natural appearance of an anomalous U(1)PQ symmetry

in this class of models has many benefits. Such symmetries also fit quite naturally with

the programme of unifying the gauge interactions of the MSSM. This fact is not new, and

has been appreciated for some time in the context of four-dimensional E6 GUT models

where the chiral matter of the MSSM and Higgs fields all descend from the 27. The

U(1)PQ embeds as the abelian factor of the subgroup SO(10) × U(1) ⊂ E6 because the 27

decomposes as:

E6 ⊃ SO(10) × U(1) (1.5)

27 → 1+4 + 10−2 + 16+1 (1.6)

which contains both the Higgs fields (10−2) and the chiral matter (16+1) of the MSSM.

Note, however, that four-dimensional models will also contain many additional states be-

– 5 –



J
H
E
P
0
9
(
2
0
0
9
)
0
7
9

yond those required to accommodate the MSSM. These additional states significantly re-

duce the appeal of starting with such large four-dimensional gauge groups.

The situation is more flexible in local F-theory models precisely because matter fields

can organize into representations of a group which contains the four-dimensional gauge

group as a proper subset. Geometrically, this is a consequence of the fact that the rank

of the singularity type can jump by more than one rank along matter curves. When this

occurs, we find that the matter content of the local F-theory GUT models typically come

charged under a U(1) Peccei-Quinn symmetry, rendering the matter content of our proposal

technically natural. While most four-dimensional GUTs focus on the role of the 27 of E6,

we note that the messenger fields can come from the 10+2 ⊂ 27 and the X field can come

from the 1−4 ⊂ 27. One bonus feature of this scenario is that matter parity — a symmetry

which is often invoked to prevent rapid nucleon decay in the MSSM — can also be identified

as a Z2 subgroup of U(1)PQ.

In any complete model of supersymmetry breaking, it is also important to specify

the mechanism by which supersymmetry is broken. In keeping with the philosophy of

decoupling, we present one stringy/higher dimensional gauge theoretic realization of su-

persymmetry breaking which only utilizes degrees of freedom associated with the U(1)PQ

seven-brane. This U(1) symmetry is anomalous and instanton effects will generate a term

linear in the X field which violates this symmetry. Nevertheless, this gauge symmetry

leaves behind an important remnant in the form of a D-term potential with a non-trivial

Fayet-Iliopoulos term determined by the background field strength on the Peccei-Quinn

seven-brane. We find that this hybrid Fayet-Polonyi model typically breaks supersymme-

try in the range required for our local F-theory models. Further details on such instanton

generated effects in local F-theory models have recently been studied in [27] (see also [28]).

As noted above, the numerology of these local F-theory GUTs is remarkably con-

strained and we have used this fact to extract definite predictions for the low energy

spectrum. We find that our model satisfies all of the required crude phenomenological

constraints when:

F ∼ 1017 GeV2 (1.7)

Mmess ∼ x ∼ 1012 GeV (1.8)

MX ∼ 1015.5 GeV (1.9)

where Mmess is the mass of the messenger fields. Moreover we will show that obtaining

these specific values does not involve any unnatural fine-tunings. The resulting values for

the universal gaugino contribution F/x, µ term and axion decay constant are:

Λ =
F

x
∼ 105 − 106 GeV (1.10)

µ = γ
F

MX
∼ 102 − 103 GeV (1.11)

fa =
√

2 |x| =
√

2
MX

γ

µ

Λ
∼ 1012 GeV, (1.12)
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where γ ∼ 10. We also find that Bµ ∼ 0 and the A-terms vanish near the messenger scale.

The small hierarchy in scales determined by the ratio µ/Λ ∼ 10−3 is in fact correlated with

the small hierarchy between the GUT scale and Planck scale MGUT/Mpl ∼ 10−3. As we

show in the explicit realization of the Fayet-Polonyi model, this same ratio also determines

the value of the intermediate scale 1012 GeV.

Armed with the specific UV boundary conditions of our model, it is in fact possible to

extract detailed properties of the low energy theory. The reason this is possible is primarily

due to the predictive features of gauge mediation scenarios as well as the low energy

requirement that electroweak symmetry breaking takes place. Even the PQ deformation

away from gauge mediation is sufficiently simple to retain much of the predictive power

of this scenario. Iterating all parameters under renormalization group flow between the

weak scale and messenger scale allows us to constrain both the UV and IR behavior of the

theory. To perform this analysis, we have used the program SOFTSUSY [29].

As in most gauge mediated scenarios, the gravitino is the LSP, and in our models it

has a mass of order 101−102 MeV. We find that consistent electroweak symmetry breaking

requires that tan β ∼ 30 ± 7 for Λ ∼ 105.5∓0.5 GeV. In the case of a single vector-like pair

of messenger fields, the NLSP is typically a bino-like neutralino, while for a larger number

of vector-like pairs (> 3 vector-like pairs of 5⊕ 5), the stau will instead become the NLSP.

We also find that the NLSP can correspond to the stau in a single messenger model when

a large PQ deformation is present.

The organization of this paper is as follows. In section 2 we briefly review some fea-

tures of the local F-theory GUT models found in [1, 2]. Next, in section 3 we review the

µ/Bµ problem and in particular its relation to gauge mediated supersymmetry breaking.

In section 4 we show that a broad class of local F-theory models contain Giudice-Masiero

operators which require the scale of supersymmetry breaking to be lower than in grav-

ity/moduli mediation scenarios. Motivated by this result, in section 5, we present a mini-

mal realization of gauge mediation in this context. In section 6 we show that this class of

models typically contain a candidate QCD axion with decay constant in the phenomeno-

logically viable range. Section 7 presents a sketch of a less minimal GUT model based on

embedding U(1)PQ in E6, and in section 8 we study the dynamics of the anomalous U(1)PQ

theory and show that it can break supersymmetry in the range required from bottom up

considerations. We next determine in section 9 the region of MSSM parameter space for

this class of models, and section 10 presents our conclusions and potential directions for

future investigation.

2 Review of minimal F-theory GUTs

We now briefly review the basic features of local F-theory GUT models studied in [2].

F-theory can be viewed as a strong coupling limit of type IIB string theory where the

axio-dilaton is interpreted as the complex structure modulus of an elliptic curve. F-theory

compactified on an elliptically fibered Calabi-Yau fourfold leads to a four-dimensional N =

1 theory below the scale of compactification. This elliptic fibration can degenerate to a

singularity of ADE type over complex codimension one subspaces of the threefold base

– 7 –
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B3. These loci are interpreted as the location of seven-branes with corresponding gauge

group of ADE type. The singularity type can enhance further over complex codimension

two subspaces. This is interpreted as the intersection of distinct seven-branes, which we

shall refer to as matter curves. In this way, it is possible to achieve matter content such as

the spinor representation of SO(10), something which cannot be realized in perturbative

type IIB constructions. Finally, the singularity type can enhance even further at points of

B3, where three matter curves meet. These terms lead to additional contributions to the

superpotential through wave function triple overlaps. Although forbidden in perturbative

type II constructions, GUT model interaction terms such as 5H × 10M × 10M naturally

occur at E-type enhancements of the compactification. See [1] for a detailed discussion of

the relevant interaction terms.

As found in [2], the existence of a limit where the gauge dynamics of the GUT model

can decouple from gravity turns out to impose surprisingly powerful restrictions on the ul-

traviolet behavior of the gauge theory. To decouple the GUT, the seven-brane must wrap

a del Pezzo surface. There is essentially one such surface, called del Pezzo eight which is

defined by P2 blown up at eight points. All other del Pezzo surfaces can be obtained from

this one by blowing down appropriate two-cycles. As shown in [1], the zero mode content

for del Pezzo models never contains an adjoint valued chiral superfield, and the GUT group

instead breaks to the Standard Model group through an internal flux in the hypercharge

direction of the Standard Model gauge group. In these GUT models, the Higgs fields local-

ize on curves where the net hyperflux is non-trivial, whereas the chiral matter localizes on

curves with vanishing net hyperflux. In this way, general arguments based on index the-

ory show that the chiral matter will organize into complete GUT multiplets while for an

appropriate choice of flux, doublet triplet splitting will automatically occur. Index theory

also requires the Higgs fields to localize on distinct curves, and this turns out to automat-

ically forbid quartic superpotential terms responsible for proton decay. This framework is

rigid enough that reliable estimates of neutrino masses can be achieved. Remarkably, the

resulting values for the light neutrinos are in accord with current experimental bounds. To

extract further low energy predictions, it is necessary to specify the mechanism by which

supersymmetry is broken as well as the way in which this breaking communicates to the

MSSM. The aim of this paper is to study this question in the context of gauge mediated

supersymmetry breaking.

2.1 Supersymmetry breaking and local models

Before proceeding to more specific aspects of supersymmetry breaking, we first briefly

discuss the primary assumptions under which we shall operate throughout this paper. As

indicated in the Introduction, the primary objective of this paper is to develop a self-

consistent scenario of supersymmetry breaking in the context of a local model. Indeed,

one of the advantages of working within local models is that many aspects of Planck scale

physics can be deferred to a later stage of analysis. Within this framework, our goal will

be to determine how various aspects of supersymmetry breaking are correlated.

On the other hand, it is well known that in some cases, issues of moduli stabilization

can directly feed into aspects of supersymmetry breaking. In order for such effects not

– 8 –
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to overwhelm the contributions from purely local considerations, it is therefore necessary

to assume that some supersymmetric mechanism stabilizes most moduli. It is beyond the

scope of the present paper to address all aspects of moduli stabilization, and we shall

therefore simply assume that an appropriate mechanism is available.

In this regard, it is worth pointing out that moduli stabilization is also intimately

connected with the value of the cosmological constant. In keeping with the spirit of the

present class of models where gravity can in principle decouple, we shall view our local

considerations as imposing constraints on the form of candidate global models, and in

particular moduli stabilization scenarios.

3 Review of gauge mediation and the µ/Bµ problem

In this section we briefly review gauge mediation and the µ/Bµ problem. This material is

primarily review and can safely be skipped by the reader who is familiar with the relevant

issues. Even so, our emphasis will be slightly different than what is sometimes stressed in

the literature. To frame the discussion, we first recall the µ/Bµ problem of the MSSM,

and then proceed to describe how the Giudice-Masiero mechanism addresses this issue in

gravity/moduli mediated supersymmetry breaking. Motivated by the potential presence

of large FCNCs, we next review the salient features of gauge mediated supersymmetry

breaking models, and explain why the µ/Bµ problem is potentially more severe in that case.

The soft supersymmetry breaking terms of the MSSM Lagrangian determine the low

energy particle content. In order to solve the hierarchy problem without significant fine-

tuning, the soft masses must be within an order of magnitude of the weak scale. An

extensive phenomenological review of this sector of the MSSM may be found in [30]. There

are typically at least three sectors in any viable model of supersymmetry breaking. These

consist of the visible sector, defined by the fields and interaction terms of the MSSM, a

hidden sector where supersymmetry breaking occurs, and a messenger sector which com-

municates the breaking of supersymmetry in the hidden sector to the visible sector. In

direct mediation models, the messenger and “hidden” sectors are combined.

Supersymmetry breaking can originate from a violation of either the F-term equations

of motion, the D-term equations of motion, or some combination of the two. In this paper

we shall always assume that the effects of supersymmetry breaking can be parameterized

by the expectation value of an MSSM gauge singlet chiral superfield X with vev:

〈X〉 = x + θ2F , (3.1)

so that the scale of supersymmetry breaking associated with the chiral superfield X is
√

F .

After integrating out the messenger sector, X will couple to the fields of the MSSM. When

X attains the vev of equation (3.1), it will subsequently induce various soft supersymmetry

breaking terms in the MSSM Lagrangian.

Although technically speaking the µ term of the MSSM is defined as a contribution to

the superpotential of the MSSM, as we now review, the µ/Bµ problem suggests that this

term and the soft supersymmetry breaking terms of the MSSM possess a common origin.

Because the Hu and Hd fields form a vector-like pair with respect to the quantum numbers
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of the Standard Model gauge group Gstd, there is a priori no reason to exclude terms in

the superpotential of the MSSM of the form:

W ⊃ µHuHd. (3.2)

There are various refinements of the µ problem, but at the crudest level, it is the puzzling

fact that the mass of a vector-like pair is generically closer to the GUT scale rather than

the weak scale. Similarly, there is no reason to exclude large terms in the effective potential

involving the scalar components hu and hd of the respective chiral superfields Hu and Hd:

Veff ⊃ Bµhuhd. (3.3)

Combined, these two issues define the weakest version of the µ/Bµ problem.

At the level of effective field theory, the bare µ term can be forbidden by assuming

that the Higgs superfields are both charged under a U(1) Peccei-Quinn symmetry. In order

to allow all of the necessary interaction terms of the MSSM, all fields which couple to the

Higgs fields must also be appropriately charged under U(1)PQ. As explained in [2], such

symmetries are quite common in GUT models based on F-theory.

In F-theory, vector-like pairs interact by coupling with gauge singlet fields localized on

matter curves normal to the surface wrapped by the GUT model seven-brane. For example,

letting X⊥ denote the singlet which interacts with the Higgs fields, the corresponding

contribution to the superpotential is:

WX⊥HuHd
= κX⊥HuHd. (3.4)

Depending on the sign of fluxes through the curve supporting the X⊥ field, the singlet wave

function will either be attracted or repelled away from the GUT model seven-brane. When

it is repelled, the value of the Yukawa coupling κ can naturally be much smaller than an

order one number, so that even if the vev of X⊥ is near the GUT scale, the resulting µ term

could still be quite small. Note in particular that B = 0 at high scales, and is only generated

at lower energies by radiative corrections to the effective potential for the Higgs scalars.

Even so, this solution is somewhat unsatisfactory because it does not explain why µ

is so close to the scale of supersymmetry breaking. This is a stronger version of the µ/Bµ

problem. On the other hand, it could well be that these two scales are simply uncorrelated,

in which case the above mechanism provides a simple mechanism by which to solve the

weak version of the µ problem. Solving the strong version of the µ/Bµ problem is one of

the primary aims of this paper.

Beyond aesthetic concerns, there is a potentially more serious problem when the cou-

pling of equation (3.4) contributes to the superpotential. Indeed, when X⊥ = X, note that

the vev of equation (3.1) will generate contributions to the µ and Bµ terms:

µ = κx (3.5)

Bµ = κF . (3.6)

In other words, when κ is an order one coefficient, the vevs of x and
√

F must already

be quite close to the weak scale to avoid removing the Higgs fields from the low energy

spectrum. This is problematic because as we will review shortly, in both gravity/moduli

mediation and gauge mediation scenarios,
√

F is typically greater than the weak scale.
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3.1 Interpolating from gravity/moduli mediation to gauge mediation

Starting from higher values of the supersymmetry breaking scale set by
√

F , we now re-

view how a phenomenologically viable mediation mechanism will interpolate from grav-

ity/moduli mediation to gauge mediation at lower values of
√

F . One conveniant way to

parameterize the dominant mediation mechanism is in terms of the gravitino mass:

m3/2 =

√
4π

3

|F |
Mpl

(3.7)

where Mpl ∼ 1.2 × 1019 GeV. In gravity mediation models, the gravitino mass is around

102 − 103 GeV, while in gauge mediation models, this value is at the very most 1 GeV.

In certain cases, it is possible to further increase the scale of supersymmetry breaking in

anomaly mediated scenarios. For further review, see for example, [21].

Gravity mediated supersymmetry breaking refers to any class of models where the soft-

breaking terms originate from Planck suppressed higher-dimension operators. As such, in

string theory it is more appropriate to refer to this class of possibilities as gravity/moduli

mediated supersymmetry breaking. The X field couples to the chiral superfields Ψ of the

MSSM through terms such as:

Lsoft ⊃
∫

d4θ

(
γpl

X†HuHd

Mpl
+ γΨ

X†XΨ†Ψ

M2
pl

)
(3.8)

where the γ’s denote order one coefficients. When X develops a vev as in equation (3.1),

the resulting theory will automatically contain a contribution to the µ-term and the soft

scalar mass terms:

µeff ∼ F

Mpl
(3.9)

m2
Ψ ∼ |F |2

M2
pl

. (3.10)

In other words, the scale µeff correlates with the energy scale of the soft mass terms, solving

the µ-problem. This means of generating the µ term is known as the Giudice-Masiero mech-

anism [14] and we shall sometimes refer to X†HuHd as the Giudice-Masiero operator. Note

that by construction, the value of µ correlates with the scale of supersymmetry breaking.

In order for the Higgs up/down fields to retain masses near the weak scale, the con-

tribution to the µ term from the Giudice-Masiero mechanism must be at most 103 GeV.

Hence, |F | is bounded above by:2

|F | . 1021 − 1022 GeV2. (3.11)

It is certainly appealing that in gravity/moduli mediated models, the µ term automat-

ically correlates with the scale of the soft breaking terms. But in gravity/moduli mediated

2We note that this value can be increased even further in certain scenarios such as anomaly mediation.
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scenarios, the coefficients γΨ in equation (3.8) are also typically generic order one coeffi-

cients, so that large flavor changing neutral currents (FCNCs) will be present. For this

reason, it is quite common to specify additional flavor symmetries in order for such models

to remain viable.

Nevertheless, the Planck suppressed contributions proportional to γΨ in equation (3.8)

will always be present, and in the absence of an appropriate theory of flavor, will always

generate FCNCs when X develops a supersymmetry breaking vev. Perhaps the simplest

way to avoid any problem with FCNCs is to lower the scale of supersymmetry breaking so

that F/Mpl is at most 1 GeV. As reviewed in [21], for example, this bound is low enough

to remain in accord with observation.

If the contribution of the Planck suppressed operators to the soft mass terms falls below

the weak scale, other mediation mechanisms must account for the soft breaking terms of

the MSSM. Gauge mediation [31–40] is a mechanism where the gauge fields of the Standard

Model communicate supersymmetry breaking to the MSSM. See [41] for a review of gauge

mediation. In gauge mediation, the X field couples in the superpotential to “messenger

fields” which either transform in a real representation of the Standard Model gauge group

Gstd = SU(3)C × SU(2)L × U(1)Y , or in vector-like pairs of complex representations. In

this paper we shall always assume that the messenger fields transform in vector-like pairs

of complex representations, and we shall denote these pairs as Y and Y ′.

As a brief aside, we note that this simplifying assumption is well-motivated in F-theory

models. For example in the minimal SU(5) GUT models studied in [2], the only available

representations are the 24 for bulk modes, and the 5, 10 or complex conjugates for modes

which localize on matter curves. Furthermore, when the GUT model seven-brane wraps a

del Pezzo surface, the vanishing theorem of [1] establishes that no zero modes transform

in the 24 of SU(5). Hence, all chiral superfields of the four-dimensional effective theory

charged under the GUT group must descend from complex representations of SU(5).

In this paper we shall further restrict attention to single messenger models where the

gauge singlet X interacts with the messenger fields through the superpotential term:

WXY Y = λXY Y ′ (3.12)

where λ is generically an order one coefficient.3 Even in this simple case, there is addi-

tional structure present in most F-theory models because the wave functions of different

components of a complete GUT representation will in general be different [2].

More generally, it is in principle possible to consider models with a larger number of

messenger fields. On the other hand, in order to maintain the existence of a decoupling

limit, we must also require that the running of the couplings in the zero mode sector should

preserve asymptotic freedom. In an SU(5) model with three generations in the 5M ⊕ 10M ,

3While it is certainly possible to also consider models where the messenger sector is strongly coupled,

in the context of F-theory models, our expectation is that a perturbative treatment will suffice for most

purposes. The study of strongly coupled messenger sectors is indeed a topic of current interest, see for

example [42, 43]. In the context of local F-theory models with perturbative gauge dynamics, we shall make

the reasonable assumption that the messenger sector is sufficiently weakly coupled that a perturbative

treatment is available.
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a single vector-like pair of Higgs fields and Nmess vector-like pairs of messengers in the 5⊕5

of SU(5), the beta function is:

bGUT = 3C2(24) − 3
(
C2(10M ) + C2(5M )

)
− 2C2(5H ) − 2Nmess (C2(5Y )) (3.13)

= 8 − Nmess (3.14)

where in the above, C2 denotes the quadratic Casimir of various representations. In other

words, asymptotic freedom limits the number of messengers to Nmess < 8. This is somewhat

stronger than the usual condition typically considered in the GUT literature where the

coupling constant must simply remain perturbative up to the GUT scale.

Once X develops a vev as in equation (3.1), the coupling between the gauge fields and

the messenger fields will induce soft breaking terms in the MSSM. Integrating out the Y

fields, the soft breaking terms will contain the contributions:

L ⊃
∫

d4θ

(
3∑

i=1

− α2
i C2(R

i
Ψ)
(
log |X|2

)2
Ψ†Ψ

)
(3.15)

+

∫
d2θ Re

(
3∑

i=1

1

8πi

(
τ

(i)
YM +

1

2πi
log X

)
TrG(i)

W α
(i)W(i)α

)
(3.16)

where Ψ is shorthand for any chiral superfield of the MSSM, and τ
(i)
YM denotes the holo-

morphic Yang-Mills coupling of the ith gauge group factor G(i) so that:

τYM =
4πi

g2
YM

+
θYM

2π
=

i

αYM
+

θYM

2π
. (3.17)

In gauge mediation, the soft masses of the gauginos follow from equation (3.16) so

that:

mi =
αi

4π

F

x
≡ αi

4π
Λ (3.18)

where in the above, we have introduced the ratio Λ = F/x. Assuming that the mass of

the bino is on the order of 102 GeV and originates predominantly from gauge mediation

requires:

Λ =
F

x
∼ 105 GeV. (3.19)

One of the most important features of gauge mediation is that in the absence of other

sources of flavor violation, the soft masses depend only on the gauge quantum numbers of

a given field. In particular, this means that the potentially dangerous FCNCs of gravity

mediated models are quite suppressed.

Turning the discussion around, the presence of messenger fields in the low energy

spectrum could in principle be incompatible with a higher scale of supersymmetry breaking

such as that associated with gravity/moduli mediation. For example, if the singlet field

X interacts with messenger fields transforming in GUT multiplets, increasing the ratio

Λ = F/x will simply increase the contribution to the soft masses due to gauge mediation.

Unfortunately, generating an appropriate value of the µ term in gauge mediation is

somewhat problematic. Indeed, if the only contribution to the effective µ term is given by
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equation (3.9), the resulting value of µ would be far too low. The simplest attempts to solve

the µ/Bµ problem also fail. For example, returning to the discussion near equation (3.5),

directly coupling the X field to the Higgs fields through a term such as:

WXHuHd
= κXHuHd (3.20)

can indeed induce an appropriate value for the µ term. Note, however, that B is insensitive

to the value of κ because:

B =
Bµ

µ
=

κF

κx
= 105 GeV. (3.21)

Thus, unless κ is quite small, generic values of x and F will typically generate mass terms

for the Higgs fields far above the weak scale. While it is indeed possible in F-theory

constructions to exponentially suppress κ so that both these terms are sufficiently small,

the alternative and conceptually simpler point of view which we shall adopt in this paper

is that the coupling of line (3.20) should be absent from the low energy superpotential.

4 Variants of the Giudice-Masiero mechanism and higher dimension op-

erators

Although the Giudice-Masiero mechanism solves the µ problem in gravity/moduli mediated

scenarios, in gauge mediated models, the same contribution to the µ term would be far

below the weak scale. But while this contribution to the low energy theory is somewhat

innocuous, we have also seen that the superpotential term XHuHd should not be present.

In models with a U(1)PQ symmetry, the Giudice-Masiero mechanism and the presence of

the term XHuHd are in fact mutually exclusive. Indeed, when Hu, Hd and X are all

charged under U(1)PQ, the F-term XHuHd is forbidden whenever the D-term X†HuHd

is allowed, and the converse statement holds as well. Thus, the existence of the Giudice-

Masiero operator effectively frustrates the Bµ term.

The Giudice-Masiero operator:

OX†HuHd
= γpl

∫
d4θ

X†HuHd

Mpl
(4.1)

can also generate a value of µ near the weak scale in gauge mediated scenarios when the

coefficient γpl is sufficiently large. Said differently, this is equivalent to replacing γpl by an

order one coefficient and the suppression scale Mpl by some lower energy scale MX , such

as the GUT scale so that:

OX†HuHd
= γ

∫
d4θ

X†HuHd

MX
. (4.2)

This observation is not new and has, for example, formed the basis of the “sweet spot”

model of supersymmetry breaking [21].

In a generic effective field theory, the typical situation is not as simple. If we perform

the natural identification MX = x, this theory will also generate a large Bµ term via the

operator: ∫
d4θ

X†XX†HuHd

M3
X

. (4.3)
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Indeed, saturating the d4θ integrals through the X superfields yields:

Bµ = −|F |2x
M3

X

. (4.4)

When MX = |x|, this yields a problematically large value of the Bµ term:

|Bµ| =

∣∣∣∣
F

x

∣∣∣∣
2

. (4.5)

Thus, in order to solve the µ/Bµ problem, we must also explain why the suppression scale

in the above operators can be greater in magnitude than x.

Moreover, while intriguing, replacing Mpl by MX in a four-dimensional effective field

theory is quite ad hoc. Nevertheless, in this paper we will show that this replacement

is quite natural in local F-theory models and in certain cases unavoidable. For example,

when F ∼ 1017 GeV2 and MX ∼ 1015.5 GeV, this induces an effective µ term:

µeff = γ
F

MX
∼ γ · 101.5 GeV (4.6)

which without any fine-tuning is already quite close to the weak scale. Further, as we show

later in this paper, fluxes can naturally allow the scale of |x| to be much smaller than MX .

Indeed, the mild hierarchy of scales |x| /MX ∼ 10−3 provides a solution to the Bµ problem

in the class of models we consider.

Summarizing the bottom up considerations described above, we are interested in four-

dimensional effective field theories where the F-term coupling XHuHd is forbidden, but

the D-term coupling X†HuHd is allowed. In F-theory constructions, these two features are

not only compatible, but are in fact quite tightly correlated! Geometrically, the matter

curves supporting the X, Hu and Hd fields must form a triple intersection in order for

the D-term coupling to be gauge-invariant. Remarkably, integrating out the Kaluza-Klein

modes associated with X generates a Giudice-Masiero operator suppressed by an energy

scale close to MGUT.

This has important consequences for F-theory models where the X field is charged

under a Peccei-Quinn symmetry and interacts with the Higgs fields through a Giudice-

Masiero term. Because the suppression scale of this operator will at most be a few orders

of magnitude below the Planck scale, it follows that the resulting µ term would be far too

large in gravity/moduli mediated scenarios. In other words, we deduce that in a large class

of F-theory compactifications, the scale of supersymmetry breaking must be sufficiently

low to remain in accord with electroweak symmetry breaking!

The presence of the U(1)PQ symmetry has another consequence in the low energy

theory. Whereas in a four-dimensional effective field theory U(1)PQ can be treated as a

global symmetry, in a quantum theory of gravity, this symmetry must be gauged. When this

U(1) is non-anomalous, it will also contribute to the soft scalar mass terms via the usual

gauge mediation mechanism. However, in F-theory constructions, this U(1) is typically

anomalous, and the corresponding gauge boson will develop a large mass via the Green-

Schwarz mechanism. Precisely because all of the fields of the MSSM must be charged under
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U(1)PQ, heavy U(1)PQ gauge boson exchange between MSSM fields and X will generate

additional contributions to the soft scalar mass terms of the MSSM fields.

The rest of this section is organized as follows. First, we show that in local F-theory

models where the U(1)PQ symmetry allows the X field to couple to the Higgs fields through

a Giudice-Masiero operator, integrating out the Kaluza-Klein modes of the higher dimen-

sional theory automatically generates this operator. This establishes that in a large class of

F-theory models, gravity/moduli mediation would yield a value of the µ term which is phe-

nomenologically unviable. Next, we show that when the U(1)PQ symmetry is anomalous,

heavy U(1)PQ gauge boson exchange can in some cases generate important corrections to

the soft scalar masses.

4.1 Giudice-Masiero operators

In this subsection we show that in a broad class of F-theory models, integrating out the

Kaluza-Klein modes associated with X generates a Giudice-Masiero term which is sup-

pressed by the Kaluza-Klein scale. We emphasize that this is essentially a tree level com-

putation, and that once additional details of the compactification have been specified, the

coefficient of this higher dimension operator is completely calculable. This is in contrast to

standard arguments from effective field theory, which must typically appeal to estimates

based on genericity considerations.

To generate a Giudice-Masiero operator, we shall assume that the matter curves ΣX ,

ΣHu and ΣHd
which support the fields X, Hu and Hd form a triple intersection such that

XHuHd is not a gauge invariant operator. In this case, the term:

OX†HuHd
= γ

∫
d4θ

X†HuHd

MX
(4.7)

does correspond to a gauge invariant operator. This is because, as explained in [1], the

six-dimensional fields from which X, Hu and Hd descend organize into vector-like pairs of

four-dimensional N = 1 chiral superfields X⊕ Xc, Hu⊕Hc
u and Hd⊕Hc

d labelled by points

on the matter curves. Thus, only one of the two interaction terms XHuHd or XcHuHd can

descend to a superpotential term for the zero modes. Assuming the XcHuHd interaction

is present, the fact that X† and Xc have identical gauge quantum numbers implies that

OX†HuHd
is gauge invariant. To establish that OX†HuHd

is generated, we first present the

Lagrangian density for this system in four-dimensional N = 1 superspace:

L =

∫

ΣX

d4θ
[
X†eV

′

XeV ′′

+ (Xc)† e−V
′

Xce−V ′′
]

(4.8)

+

∫

Σu

d4θ
[
(Hu)† eV ′

Hue+V + (Hc
u)† e−V ′

Hc
ue−V

]
(4.9)

+

∫

Σd

d4θ
[
(Hd)

† e+V ′′

Hde
−V + (Hc

d)
† e−V ′′

Hc
de

+V
]

(4.10)

+

∫

ΣX

d2θXc
(
∂ + A′ + A′′)X (4.11)
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+

∫

Σu

d2θHc
u

(
∂ +A+ A′)Hu (4.12)

+

∫

Σd

d2θHc
d

(
∂ + A− A′′)Hd (4.13)

+

∫

Σ

d2θ [δpX
cHuHd + δpXH

c
uH

c
d] + h.c.. (4.14)

In the above, we have organized the gauge field contribution from the various seven-branes

into four-dimensional N = 1 supermultiplets so that the V ’s denote the contribution from

vector multiplets which transform as bulk mode scalars on the associated Kähler surface

and the A’s denote the contribution from chiral superfields which transform as bulk mode

one-forms on the appropriate Kähler surface. Finally, δp denotes a delta function with

support at a point of triple intersection. The F-term equations of motion for the six-

dimensional fields are:

∂W

∂X
= −∂A′+A′′Xc + δpH

c
uH

c
d = 0 (4.15)

∂W

∂Xc
= ∂A′+A′′X+ δpHuHd = 0 (4.16)

with similar expressions for the H equations of motion. Expanding about a fixed super-

symmetric background gauge field configuration for the fields A′ and A′′ which we denote

by A′ and A′′, solving for Xc and X yields:

Xc =
1

∂A′+A′′

(δpH
c
uH

c
d) (4.17)

X = X − 1

∂A′+A′′

(δpHuHd) (4.18)

where in the above, we have included the zero mode X which by definition, is annihilated

by ∂A′+A′′ .

Substituting these expressions into equation (4.8) is equivalent to integrating out the

Kaluza-Klein modes of the X and Xc fields. The resulting effective action for the zero

modes therefore contains the term:

Leff ⊃
∫

ΣX

d4θ
[
(X − GA′+A′′ (z, p) HuHd)

† eV
′

(X − GA′+A′′ (z, p) HuHd) eV ′′
]

(4.19)

+

∫

Σu

d4θ
[
H†

ueV ′

Hue+V
]

+

∫

Σd

d4θ
[
H†

de
+V ′′

Hde
−V
]

(4.20)

where in the above, GA′+A′′ denotes the Green’s function defined by the relation:

∂A′+A′′GA′+A′′ (z, p) = δp = δ(2)(z − p) (4.21)

where z is a local coordinate on the Riemann surface ΣX . Using the approximation:
∫

ΣX

GA′+A′′ (z, p) ∼ M2
∗V ol(ΣX)

MX
(4.22)
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where MX denotes the mass scale of the Kaluza-Klein modes on the curve ΣX , canonically

normalizing all Kinetic terms yields the Lagrangian density of the X/Higgs system:

Leff ⊃
∫

d4θ
[
H†

ueV ′

Hue+V + H†
de

+V ′′

Hde
−V + X†eV ′

Xe−V ′′
]

(4.23)

+

∫
d4θ

[ √
M2∗V ol(ΣX)√

M2∗V ol(Σu)
√

M2∗V ol(Σd)

X†eV
′

HuHde
V ′′

MX

]
+ h.c.. (4.24)

When X develops a non-supersymmetric vev, this induces an effective µ-term:

µeff =

√
M2∗V ol(ΣX)√

M2∗V ol(Σu)
√

M2∗V ol(Σd)
× F

MX
≡ γ

F

MX
. (4.25)

A similar expression holds when additional X field zero modes contribute to the low energy

theory. Assuming that V ol(Σu) = V ol(Σd) = M−2
GUT, the relations M4

∗ /M4
GUT = αGUT and

V ol(ΣX) = M−2
X imply:

γ = α
1/4
GUT

MGUT

MX
. (4.26)

As estimated in [2], it is most natural for the Kaluza-Klein scale MX be close to the

GUT scale. When convenient, throughout this paper we will use the representative values

MGUT ∼ 3×1016 GeV and MX ∼ 1015.5 GeV. This implies that the parameter γ ∼ 10, and

that µeff ∼ 300 GeV. Thus, this class of higher-dimensional models realizes a variant of the

Giudice-Masiero mechanism, but for gauge mediated models!

To close this section, let us also address the value of the Bµ term in this case. Due to

the presence of the U(1)PQ symmetry, the leading order contribution originates from the

higher dimension operator:

∫
d4θ

X†XX†HuHd

M3
X

→ µ
x

MX
huhd, (4.27)

where hu and hd denote the scalar components of the Higgs chiral superfields. Since x/MX

is by construction small, the resulting value of Bµ at the messenger scale can effectively be

set to zero. In addition, let us also note that additional corrections to Bµ will be suppressed

because the matter fields localize on curves in the higher dimensional geometry. Similar

considerations apply for other contributions, such as the A-terms of the MSSM.

4.2 U(1)PQ induced soft mass terms

In a quantum theory of gravity, the U(1) Peccei-Quinn symmetry must be gauged. Thus,

because the X field is charged under U(1)PQ, it will interact via gauge boson exchange with

all other fields charged under U(1)PQ. In the present case of interest, the U(1)PQ symmetry

is anomalous and the corresponding gauge boson will develop a large mass via the Green-

Schwarz mechanism. Heavy U(1)PQ gauge boson exchange generates the operators [44]:

OX†XΨ†Ψ = −4παPQ
eXeΨ

M2
U(1)PQ

·
∫

d4θX†XΨ†Ψ (4.28)
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where in the above, Ψ denotes a generic chiral superfield charged under U(1)PQ, and

X and Ψ are canonically normalized chiral superfields. In addition, eX = +4, eΨ =

+2 for the Higgs fields, and eΨ = −1 for all other chiral superfields of the MSSM. An

important feature of this contribution is that the overall sign of the corresponding operator

is completely fixed by the charges of the various fields. In addition, this term is diagonal in

a gauge quantum number basis of eigenstates. This implies that this class of operators will

not introduce additional FCNCs. Finally, we note that we have implicitly assumed that

the dominant contribution to this operator comes from this heavy U(1)PQ gauge boson.

In higher dimensional theories such as this one, additional terms could potentially yield

corrections to this result when the mass of this gauge boson is sufficiently large.

Once X develops a supersymmetry breaking vev, the operator of equation (4.28) will

induce a contribution to the soft masses squared:

δPQm2
Ψ(Mmess) = 4παPQ

eΨeX

M2
U(1)PQ

|F |2 . (4.29)

Note that the relative strengths of this contribution to the matter fields versus Higgs fields

is set by their relative PQ charges:

δPQm2
Φ(Mmess)

δPQm2
H(Mmess)

= −1

2
(4.30)

where here, H refers to the Higgs superfields and Φ refers to all other chiral superfields of

the MSSM. This provides a universal prediction for a specific deformation away from the

usual gauge mediated supersymmetry breaking scenario.4 In particular, we also note that

the PQ deformation will lower the mass of the sleptons and squarks, and will increase the

soft mass squared of the Higgs fields at the messenger scale. Note that to leading order,

the masses of the gauginos are not altered by this contribution.5

As a crude order of magnitude estimate, we use the values for αPQ and MU(1)PQ
for

external U(1) factors obtained in [2]:

αPQ ∼ 10−2 (4.31)

MU(1)PQ
∼ 1015 GeV. (4.32)

Assuming that F ≤ 1017 GeV2, the soft mass terms are roughly given by:

∆PQ ∼
√

4παPQ
F

MU(1)PQ

∼ 30 GeV. (4.33)

These estimates depend on various assumptions about the sizes of αPQ and MU(1)PQ
, and a

slight change in their values can potentially induce important contributions to the soft mass

terms of the MSSM. Indeed, we will study some of the consequences of this deformation in

section 9.
4That this is the leading contribution to this higher dimension operator follows from the fact that the

X and Ψ fields localize on different curves.
5As emphasized in [44], there will in general be a contribution to the masses of the gauginos in such

models via D-term breaking effects through the coupling of the gauge fields to the dilaton. Typically,

however, such contributions can only make a substantial contribution to the gaugino masses when the value

of F is larger than we consider here, and we shall therefore neglect this contribution throughout this paper.
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U(1)′ U(1)′′ U(1)PQ

X +2 −2 +4

Y −2 0 −2

Y ′ 0 +2 −2

Hu +2 0 +2

Hd 0 −2 +2

10M −1 0 −1

5M +1 +2 −1

Table 2. U(1)′, U(1)′′ and U(1)PQ charge assignments for the fields of the diamond ring model.

5 Diamond ring model

In this section we present a minimal F-theory realization of gauge mediated supersymmetry

breaking where X couples to the Higgs fields through a Giudice-Masiero operator. As

we have seen in previous sections, the presence of an additional U(1)PQ symmetry plays

an especially prominent role in the low energy effective field theory. In F-theory, such

symmetries can originate from either Kaluza-Klein reduction of bulk gravity modes, or

from the worldvolume gauge group of seven-branes in the compactification. In keeping

with the general principle of decoupling, we shall only consider the latter possibility.

We consider a model where X localizes on a matter curve defined by the intersection

of two distinct seven-branes wrapping Kähler surfaces which we denote by S′ and S′′. To

denote the charge of X under these two seven-branes which generically have U(1) gauge

groups, we shall sometimes write X+,−. In order for X+,− to interact with both the

messenger fields and the Higgs fields, the curve ΣX must form one triple intersection with

the messenger curves and another triple intersection with the Higgs curves.

In the four-dimensional effective field theory, the superpotential coupling XY Y ′ is

allowed and the coupling XHuHd is forbidden when the Y , H and GUT model chiral

matter fields have charges specified as in table 2, where U(1)PQ charge is defined as the

linear combination:

U(1)PQ = U(1)′ − U(1)′′. (5.1)

Geometrically, the curve ΣX must intersect S at two distinct points. For this reason, we

shall refer to this construction as the “diamond ring model”. See figure 1 for a depiction

of this intersecting brane configuration.

By construction, the low energy effective theory contains the terms:

L ⊃ γ

∫
d4θ

X†HuHd

MX
+

∫
d2θλXY Y ′, (5.2)

where as explained in section 4, the first term originates from integrating out Kaluza-Klein

modes associated with X.

Given the prominent role that the X field Kaluza-Klein modes play in this class of

models, it is important to analyze whether integrating out the other Kaluza-Klein modes

of the other fields play a similar role in the low energy effective action. To this end, let
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uH

dH

S

S’’

S’

X

Y’

Y

Figure 1. Depiction of the diamond ring model. The GUT model seven-brane wraps the Kähler

surface S, while the X field localizes at the intersection of two additional seven-branes wrapping

the surfaces S′ and S′′.

X̃ denote the Kaluza-Klein modes associated with the X field and similarly let Ξ̃ denote

the Kaluza-Klein modes for the Higgs fields. In this somewhat condensed notation, the Ξ̃

denote fields are charged under all three gauge group factors of the MSSM. The messenger

sector superpotential is:

W ⊃λXY Y ′

(
X + X̃

)
(Y + Ỹ )

(
Y ′ + Ỹ ′

)
+ λXcY cY ′cX̃cỸ cỸ ′c (5.3)

+ λXcHuHd
X̃c
(
Hu + Ξ̃u

)(
Hd + Ξ̃d

)
+ λXHc

uHc
d

(
X + X̃

)
Ξ̃c

uΞ̃c
d (5.4)

+ MXX̃X̃c + MuΞ̃uΞ̃c
u + MdΞ̃dΞ̃

c
d + MY Ỹ Ỹ c + MY ′ Ỹ ′Ỹ ′c. (5.5)

Typically the wave functions for the Kaluza-Klein modes and the zero modes will differ, so

that the evaluation of these wave functions at a point of triple overlap can induce further

structure in the superpotential.

The Kaluza-Klein modes Ξ̃c
u and Ξ̃c

d have the same gauge quantum numbers as the

messenger fields, and it is therefore tempting to economize the field content of the model.

However, in gauge mediated scenarios, these fields do not communicate supersymmetry

breaking to the MSSM. To see this, note that to leading order, the additional cubic in-

teraction terms of the superpotential can be neglected and we can fully determine the
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contribution to the soft masses by computing the log of the effective masses of the messen-

ger fields:

log(Mtot) =
∑

i

log
(
M i

mess

)
(5.6)

where the sum i runs over the contributions from the various candidate messenger fields.

Returning to equations (5.3)–(5.5), the mass terms are:

W
(2)
Y ⊃1

2

[
Y Y ′

] [ 0 λXY Y ′ 〈X〉
λXY Y ′ 〈X〉 0

][
Y

Y ′

]
(5.7)

+
1

2

[
Ỹ Ỹ ′ Ỹ c Ỹ ′c

]



0 λXY Y ′ 〈X〉 MY 0

λXY Y ′ 〈X〉 0 0 MY ′

MY 0 0 0

0 MY ′ 0 0







Ỹ

Ỹ ′

Ỹ c

Ỹ ′c


 , (5.8)

W
(2)
Ξ =

1

2

[
Ξ̃c

u Ξ̃c
d Ξ̃u Ξ̃d

]



0 λXHc
uHc

d
〈X〉 Mu 0

λXHc
uHc

d
〈X〉 0 0 Md

Mu 0 0 0

0 Md 0 0







Ξ̃c
u

Ξ̃c
d

Ξ̃u

Ξ̃d


 . (5.9)

By inspection, the mass matrix which determines W
(2)
Y decomposes as the block diagonal

sum of a 2× 2 matrix, and a 4× 4 matrix. Further, in the choice of basis made above, the

location of non-zero entries in this 4× 4 matrix is identical to the 4× 4 mass matrix which

determines W
(2)
Ξ . Because the determinant of each 4 × 4 matrix is independent of X, we

conclude that the Higgs field Kaluza-Klein modes cannot play the role of the messenger

fields. Hence, this class of models in fact does require a separate messenger sector.

6 Strong CP and gauge mediation

Up to this point, we have primarily focussed on the magnitude of the vevs for the chiral

superfield X. The phase of X will also couple to some of the fields of the MSSM. In this

section we show that in the generic case where the U(1)PQ gauge theory is anomalous, a

linear combination of this phase and a bulk gravity mode can potentially play the role of

the QCD axion. We find that when the gauge mediation variant of the Giudice-Masiero

mechanism solves the µ problem, the axion decay constant automatically falls within the

experimentally allowed range of values.

To set notation, we now review some of the features of axion models which are germane.

See [45, 46] for general reviews on axion physics, and [47] and references therein for an

extensive discussion of axions in string theory. The strong CP problem is the fact that

although the CP violating operator:

θ

32π2
εµνρσTrSU(3)FµνFρσ (6.1)

can in principle contribute to the Standard Model Lagrangian, the effective θ angle must

satisfy the constraint
∣∣θ
∣∣ . 10−10 in order to remain in accord with observation [48, 49].
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Here, θ is defined as the net contribution from the bare theta angle and the phase from

the determinant of the mass matrix for all fermions charged under SU(3)C .

The axion solution to the strong CP problem promotes θ to a dynamical field a with

Lagrangian density:

Laxion =
f2

a

2
∂µa∂µa +

a

32π2
εµνρσTr (FµνFρσ) (6.2)

where in the above fa is defined as the axion decay constant. The crucial point is that

QCD instantons will generate an effective potential for a which has a minimum at zero, thus

solving the strong CP problem. More explicitly, the effective potential can be approximated

using the pion Lagrangian, see for example section 23.6 of [50]:

Vax(a) = m2
πf2

π (1 − cos a) (6.3)

where fπ ∼ 90 MeV is the pion decay constant and mπ ∼ 130 MeV is the mass of the pion.

The effective mass of the canonically normalized field fa · a is therefore:

ma =
mπfπ

fa
∼ 1016 eV2

fa
. (6.4)

Current bounds on the value of fa only allow a narrow window of available energy

scales:

109 GeV < fa < 1012 GeV. (6.5)

The lower bound is from estimates on supernova cooling and is difficult to evade. The

upper bound is somewhat flexible because it assumes a standard cosmology.

In supersymmetric models, the axion is only one real degree of freedom of a complex

scalar. The other real degree of freedom in the complex scalar of the corresponding su-

permultiplet is the saxion which may be viewed as simply another modulus which must

develop a suitable mass to avoid cosmological problems. As emphasized in [51], stabilizing

the saxion is a potentially more severe issue than attaining the correct axion decay con-

stant. Moreover, it is possible that in some cases fa could be as high as 1015 GeV [51].

In keeping with the principle of decoupling, however, we shall defer all issues concerning

moduli stabilization to a later stage of analysis. For this reason, we shall assume the

conventional upper bound on the axion decay constant.

In string theory models, there are potentially many candidate axion fields because

various moduli fields will generically couple to the QCD instanton density. Note, however,

that if the compactification scale sets the dynamics of the axion, the resulting axion decay

constant will be above the available window defined by line (6.5). In fact, the ubiquity of

such axion-like couplings is also potentially problematic for the strong CP problem. As

an example, consider a model where the axion field receives contributions to its effective

potential from sources other than QCD instanton effects so that:

Vax(a) = VQCD(a) + V (a). (6.6)
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A priori, the minima of VQCD and V are uncorrelated so that the overall minimum of Vax

may shift away from zero. To estimate the size of this shift, let θ0 denote the minimum of

V . Expanding Vax to quadratic order in a therefore yields:

Vax(a) − (VQCD(0) + V (θ0)) =
1

2
V ′′

QCD(0)a2 +
1

2
V ′′(θ0) (a − θ0)

2 (6.7)

it follows that the minimum of Vax shifts to:

θ =
V ′′(θ0)

V ′′
QCD(0) + V ′′(θ0)

· θ0. (6.8)

Assuming θ0 is an order one constant, this implies:

V ′′(θ0)

V ′′
QCD(0)

< 10−10 (6.9)

in order for a to solve the strong CP problem.

We now identify possible axion fields in the present class of compactifications. Inde-

pendent of the details of the particular GUT model seven-brane theory, the QCD instanton

density will always couple to the background four-form potential through the seven-brane

worldvolume coupling C(4) ∧ TrSU(3)(F ∧ F ). Letting cS denote the integral of C(4) over

the cycle wrapped by S, the effective action for cS is:

Lc =
M8

∗V ol(B3)

2
∂µcS∂µcS +

cS

32π2
εµνρσTr (FµνFρσ) . (6.10)

As shown in [2], M8
∗V ol(B3) ∼ M2

pl, which establishes that this field cannot play the role

of the QCD axion. This is in accord with the general observations in [47] where the most

natural axion fields one would think of in the context of string theory end up having too

large a decay constant to be phenomenologically viable to be identified with the QCD

axion. In fact, as we now argue, a specific linear combination of cS and the phase of the

scalar component for the X field can play the role of the QCD axion, thus providing a

solution to this problem in the context of string theory. Note that here, the axino is the

goldstino mode which is eaten by the gravitino.6

Returning to equations (3.15)–(3.16), note that whereas the contribution to the soft

scalar masses only involves |X|2, the coupling between X and the gauge field strength

kinetic terms TrW αWα also includes a coupling to the phase of X. With notation as

before so that 〈X〉 = x + θ2F , we shall denote the phase of the vev x by the 2π periodic

variable ax so that:

x = |x| exp (iax) . (6.11)

6For earlier discussion on potential connections between the axion and the gravitino, see for example [52,

53], and for other discussions on the connection between supersymmetry breaking and the axion, see for

example [54].
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Expanding equations (3.15)–(3.16) yields:

L ⊃
∫

d4θ

(
3∑

i=1

− α2
i C2(R

i
Ψ)
(
log |X|2

)2
Ψ†Ψ

)
(6.12)

+

∫
d2θ Re

(
3∑

i=1

1

8πi

(
τ

(i)
YM +

1

2πi
log X

)
TrGi

W α
(i)W(i)α

)
(6.13)

=

∫
d4θ

(
3∑

i=1

− α2
i C2(R

i
Ψ)

(
log |x|2 + θ2 F

x
+ θ

2 F

x

)2

Ψ†Ψ

)
(6.14)

+

∫
d2θ Re

(
3∑

i=1

1

8πi

(
τ

(i)
YM +

1

2πi

[
log |x| + iax + θ2 F

x

])
TrGi

W α
(i)W(i)α

)
. (6.15)

By inspection, the angle ax couples to the QCD instanton density, as required for a candi-

date axion.

As we have seen in previous sections, X will generically be charged under at least one

U(1) group which must be gauged in a quantum theory of gravity. For example, in the

diamond ring model, X transforms in the bifundamental of a U(1) × U(1) gauge group

defined by two intersecting seven-branes. When these U(1) factors are non-anomalous, the

vev of X will spontaneously break the gauge symmetry, and the phase of X will be eaten

by the gauge boson, eliminating ax as a candidate axion. Alternatively, when these U(1)

factors are anomalous, the corresponding gauge bosons will develop a mass via the Green-

Schwarz mechanism, leaving behind global symmetries which may potentially be violated by

instanton effects. The vev of X spontaneously breaks this symmetry and the corresponding

Goldstone mode will persist as a candidate axion.7 We note that independent of any

discussion of supersymmetry breaking, the idea that such low energy global symmetries

could lead to lower values for the axion decay constant in string based models was already

noted in [55]. See section 5 of [47] for a review of the potential role of anomalous U(1)

factors in string-motivated axion physics.

Having identified two fields which possess axion-like couplings to the QCD instanton

density, the axion Lagrangian is given by:

Lax = |x|2 ∂µax∂µax +
1

2
M8

∗V ol(B3)∂µc∂µc +
ax + c

32π2
εµνρσTr (FµνFρσ) (6.16)

≡f2
a

2
∂µ (ax + c) ∂µ (ax + c) +

f2
⊥
2

∂µ(ax + βc)∂µ(ax + βc) (6.17)

+
(ax + c)

32π2
εµνρσTr (FµνFρσ) (6.18)

where the linear combination ax + c defines the candidate axion field, and ax + βc is an

orthogonal linear combination of fields. In the above, the Planck scale enters as M2
pl =

M8
∗V ol(B3). Solving for the axion decay constant fa yields:

fa =

√
2Mpl |x|√

M2
pl + 2 |x|2

=
√

2 |x| + O

(
|x|2
M2

pl

)
, (6.19)

7More precisely, the Goldstone mode is given by a linear combination of the phase of X, with a small

contribution from another axion-like field which enters in the Green-Schwarz mechanism.
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where in the final line we have expanded to leading order in the parameter x which is

generically smaller than the Planck scale.

Equation (6.19) has important consequences for the parameters of the low energy

theory. The effective µ term, messenger mass and axion decay constant are given by the

relations:

µeff = γ · F

MX
(6.20)

Mmess = λmess |x| (6.21)

fa =
√

2 |x| (6.22)

Λ =
F

x
∼ 105 GeV. (6.23)

This yields the intriguing relation:

fa =
√

2
MX

γ
· µeff

Λ
, (6.24)

which connects the GUT scale and weak scale to both the axion decay constant and the

scale of supersymmetry breaking. We note that this same relation persists when the number

of messenger fields is greater than one.

To estimate the value of the axion decay constant, we use the same representative

values obtained near equation (4.26) so that γ ∼ 10, µeff ∼ 300 GeV and MX ∼ 1015.5.

Setting Λ ∼ 105 GeV, the resulting value of fa is then:

fa ∼ 1012 GeV. (6.25)

Remarkably, this is within the axion window of line (6.5)! Given the fact that this is only an

order of magnitude estimate, we find it encouraging that with at most a mild fine-tuning of

parameters, connecting weak scale phenomenology to supersymmetry breaking in F-theory

automatically produces a viable value for the axion decay constant!

7 E6, U(1)PQ and F-theory

In previous sections we have shown that when the curve ΣX supporting X forms one

triple intersection with the Higgs curves and another triple intersection with the messenger

curves, interactions with the Kaluza-Klein modes of the X field generate a value for the

µ term in gauge mediated scenarios which is strikingly close to the weak scale. From

the perspective of F-theory, however, the identification of the U(1)PQ symmetry appears

somewhat accidental. In terms of the particular geometric realization of these matter

curves, this translates into the fact that the ΣX curve defined by the intersection of two

external surfaces S′ and S′′ must intersect S at two distinct points. While this can certainly

be arranged for certain geometries, it appears ad hoc.

These problems can be viewed as symptoms of the fact that the GUT model can

undergo a further unification to a higher E-type GUT group. Indeed, perhaps one of the

most compelling features of GUT models is the elegant packaging of the representation
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content of the MSSM into three generations of the 5 ⊕ 10 of SU(5), and the even further

unification to the 16 of SO(10) once right-handed neutrinos are included. Aside from any

theoretical bias in favor of this aesthetically appealing structure, the qualitative expectation

that the seesaw mechanism can naturally generate small neutrino masses in the Standard

Model is at the very least intriguing circumstantial evidence that this type of structure is

quite natural for phenomenology as well. In fact, unifying the Higgs and chiral matter into

E6 allows a further unification into the 27 of E6.

Each additional stage of unification equips the low energy effective theory with ad-

ditional U(1) symmetries which are of interest phenomenologically. For example, SO(10)

unification contains an additional U(1)B−L factor which can increase the lifetime of the

proton. Matter parity can be viewed as a discrete Z2 subgroup of U(1)B−L so that a chiral

generation of the MSSM organizes into a copy of the 16 of SO(10) and has parity −1, while

the Higgs fields of the MSSM which descend from the 10 of SO(10) have parity +1.

Further unification to E6 also endows the low energy theory with a U(1)PQ symmetry

in the low energy effective theory. To see how this comes about, consider the decomposition

of the 78 and 27 of E6 into representations of SO(10) × U(1):

E6 ⊃ SO(10) × U(1) (7.1)

78 → 450 + 10 + 16−3 + 16+3 (7.2)

27 → 14 + 10−2 + 161. (7.3)

In traditional four-dimensional GUT models, it is common to organize all of the matter

content of the MSSM into copies of the 27. It is immediate that the additional U(1) charge

assignment is consistent with that associated to the U(1)PQ charge for the Higgs fields and

chiral matter content of the MSSM. Moreover note that matter parity can be viewed as a

discrete Z2 subgroup of this additional U(1)PQ.

While traditional four-dimensional GUT models focus on the role of the 27 of E6, the

27 plays an equally important role for the mediation sector of the model. Indeed, the X

field and messengers can both descend from the 27 of E6 upon making the identifications:

X : 1−4 ∈ 27 (7.4)

Y, Y ′ : 10+2 ∈ 27. (7.5)

By inspection, these charge assignments allow an interaction term between X and the

messengers, while forbidding a similar interaction term with the Higgs fields, exactly as in

the charge assignments we have been assuming in the context of the diamond ring model!

As a brief aside, we recall that in [1, 2], our minimal realizations of GUT models were

based on geometries where the matter content of the MSSM descends from the 78 of E6.

While it is certainly possible to assign a U(1)PQ charge consistent with the 783 interaction

term, note that in this intermediate decomposition, the Higgs field descends from the 16

of SO(10). On the other hand, continuing with the natural progression of E-type groups,

it is also quite natural to package the matter content of the MSSM in terms of the 27.

Perhaps unfortunately, there are also well-known problems in four-dimensional GUT

models based on the gauge group GS = E6. For example, although the Higgs fields and
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chiral matter naturally package into the 27 of E6, there are three generations of chiral

matter, but only one “ generation” of Higgs fields. To remove the extraneous Higgs fields

from the other two generations of 27’s it is necessary to include either higher dimensional

representations of E6, or higher dimension operators. This additional complexity throws

into question the economy of E6 as a GUT group.

This issue is in fact more severe in models based on local del Pezzo compactifications

of F-theory. As explained in [2], GUT group breaking via fluxes will typically generate

additional exotic fields in the zero mode spectrum unless the bulk gauge group is GS =

SU(5), or SO(10) when the model descends to a flipped SU(5) model in four dimensions.

Although [2] does not contain a complete proof that direct breaking from GS = E6 to

Gstd will always generate exotics, the number of independent instanton configurations is

generically a smaller number than the number of different exotic representations which

must be excluded from the low energy spectrum. In a certain sense, this is in fact a

welcome restriction on the structure of the low energy theory, but appears to clash with

the elegant packaging of the matter fields into representations of SO(10) or E6.

There is an important loophole to the above considerations which demonstrates the

flexibility of local models in F-theory. Recall that in F-theory, a matter curve is defined

as a complex codimension one subspace in S where the singularity type enhances by at

least one rank from GS to GΣ such that GS  GΣ. The matter content localized along the

matter curve can be viewed as the intersection of two seven-branes with bulk gauge groups

GS and GS′ such that GS × GS′ ⊂ GΣ. Many of the examples in [1, 2] focussed on rank

one enhancement configurations where GS′ = U(1) or SU(2) because this is the minimal

allowed singularity enhancement in F-theory. More generally, however, the singularity type

can enhance by more than one rank.

In order to retain the appealing rigidity of local GUT models found in [2], we shall focus

exclusively on local del Pezzo models where the bulk gauge group GS = SU(5) breaks to

the Standard Model gauge group via an internal U(1) hyperflux. The matter content of the

GUT model can exhibit further unification along curves when the rank of the singularity

type increases by more than the minimal required amount. To see how this unification

works in practice, first recall that six-dimensional hypermultiplets in the 5 or 10 of SU(5)

originate from curves where the bulk singularity GS = SU(5) respectively enhances to SU(6)

or SO(10). On the other hand, when GS = SO(10) enhances to E6 along a matter curve, a

six-dimensional field in the 16 of SO(10) will localize along the same matter curve. Because

the 16 of SO(10) unifies the 5 and 10 of SU(5), our expectation is that a local enhancement

from SU(5) directly to E6 corresponds to a six-dimensional field in the 1 +5 + 10 localized

on this curve. To establish this result, we can decompose the adjoint representation of E6

to E5×U(1)2 = SO(10)×U(1)2, and then further decompose to irreducible representations

of E4×U(1)1×U(1)2 = SU(5)×U(1)1×U(1)2. Following the general philosophy of [56], the

matter fields which localize on the curve of E6 enhancement must be simultaneously charged

under these two U(1) subgroup factors. In particular, it follows that a six-dimensional

hypermultiplet in the 1−5,−3 + 53,−3 + 10−1,−3 localizes on this matter curve. A similar

analysis establishes that a six-dimensional hypermultiplet with matter content specified by

a 27 of E6 localizes on a curve where the singularity type enhances to E7.
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Figure 2. Depiction of the messenger sector of a local SU(5) model where the messengers and X

field originate from local enhancements to E7 and embed in the 27 of E6. The XY Y ′ interaction

term descends from a local enhancement to E8 at a point of triple intersection. The Higgs fields

originate from local enhancement to SU(6). In this case, the Higgs fields embed in the 27 of E6 and

can therefore only participate in a 273 interaction so that a direct coupling with the X field via the

superpotential is forbidden, but an interaction term via the Kähler potential is allowed.

This same logic also holds for higher rank enhancements at points of S. As in [1], we can

start from the adjoint representation of this higher singularity type, and by decomposing

the matter fields along each curve which is neutral under a particular subset of generators,

we find the expected enhancement in singularity type. For example, we can consider a

geometry where SU(5) enhances up to E8 at a point of S and such that E8 only decreases

by one rank along the various matter curves of the geometry. In this case, decomposing

the adjoint representation of E8 to E6 × U(1)1 × U(1)2 yields:

E8 ⊃ E6 × U(1)1 × U(1)2 (7.6)

248 → 780,0 + 10,0 + 272,0 + 27−1,−1 + 271,−1 + 27−2,0 + 271,1 + 27−1,1, (7.7)

which implies that there are three curves where the singularity type enhances to E7. Fur-

ther, the low energy theory contains a 273 interaction term, where each 27 corresponds

to a local enhancement in SU(5) to E7. It is now immediate that there are many further

combinations of rank enhancement which are potentially of interest. As usual, our guiding

principal to determine the matter content and allowed interaction terms relies heavily on

the close connection between the various ways of partially Higgsing the singularity type at

various subspaces of additional enhancement, and the corresponding deformation theory

of the geometry. See figure 2 for a depiction of how various SU(5) enhancements to E7 can

potentially accommodate the interaction terms of the messenger sector.
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There is a subtlety in reading off the matter content in the context of higher rank en-

hancements which we now explain. In the above enhancement from SU(5) to E7, we have

mainly concentrated on how the 27 obtained from the last step of enhancement from E6

to E7 decomposes into representations of SU(5). In fact, there are additional contributions

from the adjoint of E6 which come from Higgsing E6 down to SU(5). If these additional

matter fields localize on the same curve as the 27, as would be true in the simplest such

setup, then we would not be able to control the zero mode content of these contribu-

tions independently by adjusting fluxes on the curves. We would simply have too many

constraints to satisfy with too few fluxes to choose from. One way to avoid these extra

matter fields is to require that they develop a vev, partially Higgsing the corresponding

gauge group. In F-theory, this corresponds to brane recombination [1]. It is also possible

to consider geometries where a surface of general type locally behaves as a rigid divisor,

effectively Higgsing the theory to a local del Pezzo model. Some examples of this type of

phenomenon for rigid P1’s in a local Calabi-Yau threefold can be found in [57, 58]. In the

context of F-theory models, the matter content localized on a curve in the original theory

could therefore simply descend to the local del Pezzo model. Finally, it is also possible

that an appropriately engineered effective field theory could generate a GUT scale mass

for these additional states, removing them from the low energy spectrum. At any rate, we

will not address this issue further in this paper and leave a more detailed analysis to future

work. Instead, we will focus on the interplay between the matter content of such theories

with the PQ symmetry provided by higher rank enhancements in the local singularity type.

In general, when the rank of the singularity enhances by more than one rank, the

adjoint representation will contain more than one distinct representation charged under

the bulk gauge group GS so that distinct irreducible representations of GS may localize on

the same curve. In local models where U(1)PQ embeds in E6, the zero mode content along

such curves will typically automatically include not just a generation of the MSSM, but also

additional X fields, messengers or Higgs fields depending on the overall bundle assignment.

As an explicit example of these considerations, consider the matter content of a curve

where the singularity type enhances from SU(5) to E7 so that a six-dimensional hyper-

multiplet in the 271 in the E6 × U(1) localizes along this curve. Decomposing E6 to the

subgroup SO(10) × U(1)PQ, the 271 decomposes as:

E6 × U(1) ⊃ SO(10) × U(1)PQ × U(1) (7.8)

271 → 14,1 + 10−2,1 + 161,1. (7.9)

It thus follows that the bundle assignments for each representation are:

14,1 ∈ K
1/2
Σ ⊗ L4

PQ ⊗ L1 (7.10)

10−2,1 ∈ K
1/2
Σ ⊗ L−2

PQ ⊗ L1 (7.11)

161,1 ∈ K
1/2
Σ ⊗ L1

PQ ⊗ L1 (7.12)

with similar bundle assignments for the complex conjuagate representations. To avoid any

subtleties having to do with non-trivial holonomies, we now restrict our analysis to the
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case where Σ is a genus zero curve. Assuming genericity of all bundles, a similar argument

will hold in the more general case by analyzing the degrees of the various bundles. The

number of fields in the 14,1 is completely determined by the number of zero modes in the

10−2,1 and 161,1. Letting N with an appropriate subscript denote the number of fields of

a given representation, the bundle assignments for the 10−2,1 and 161,1 are:

10−2,1 ∈ K
1/2
Σ ⊗OΣ(N10−2,1) (7.13)

161,1 ∈ K
1/2
Σ ⊗OΣ(N161,1). (7.14)

Solving for the bundles LPQ and L yields:

L = OΣ(2N161,1 + N10−2,1)
1/3 (7.15)

LPQ = OΣ(N161,1 − N10−2,1)
1/3 (7.16)

so that the bundle assignment for fields in the 14,1 is:

14,1 ∈ K
1/2
Σ ⊗OΣ

(
2N161,1 − N10−2,1

)
. (7.17)

In other words, the net matter content on this curve is:

Rnet =
(
2N161,1 − N10−2,1

)
× 14,1 + N10−2,1 × 10−2,1 + N161,1 × 161,1 (7.18)

where a negative multiplicity factor indicates that the resulting fields transform in the

complex conjugate representation.

The above result demonstrates that when a full generation of the MSSM transforming

in the 16 of SO(10) localizes on a matter curve where SU(5) enhances to E7, the zero

mode content of the theory will generically contain additional matter fields. Of particular

relevance are matter curves where N161,1 > 0 and N161,1 = 0. First consider the case where

a matter curve contains at least one chiral generation of the MSSM. In order to solve the

doublet triplet splitting problem using an internal U(1) hyperflux, it follows that none of

the Higgs fields can also localize on the same curve so that N10−2,1 < 0. Returning to

equation (7.18), this implies that such matter curves also support 2
∣∣N161,1

∣∣+
∣∣N10−2,1

∣∣ zero

mode GUT group singlets with U(1)PQ charge opposite to that of the X fields. These

singlets are essentially harmless in the low energy theory so long as they do not develop

a vev, which can typically be arranged. Next consider matter curves where N161,1 = 0.

In this case, equation (7.18) implies that candidate Higgs fields and X fields generically

localize on the same matter curve. In particular, the messenger fields do not appear to

localize on the same curve as the X field zero modes.

On the other hand, in order to retain the doublet triplet splitting mechanism via hyper-

flux proposed in [2], the Higgs fields must localize on a curve of SU(6) enhancement. Indeed,

when additional matter localizes on a curve, the U(1) hyperflux will generate additional

zero modes. Assuming that the Higgs field localizes on a curve where the singularity type

enhances to SU(6), the requisite interaction term between the Higgs field and chiral matter

of the MSSM now requires that a local SU(6) enhancement must form a triple intersection
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with two curves which enhance to E7. Note that if such an intersection can be realized,

the Higgs fields will automatically come equipped with the correct U(1) PQ charge.

We now present a local construction of such an enhancement. At the point of triple

intersection, the singularity type must necessarily enhance to E8. The bulk SU(5) gauge

group can therefore be viewed as one of the factors in the decomposition of E8 to SU(5)×
SU(5). With respect to this subgroup, the adjoint representation of E8 decomposes as:

E8 ⊃ SU(5)1 × SU(5)2 (7.19)

248 → (24, 1) + (1, 24) + (5, 10) + (5, 10) + (10, 5) + (10, 5) (7.20)

where we shall take the bulk gauge group to correspond to the SU(5)1 factor. A local

enhancement in singularity type of the SU(5)1 corresponds to the locus where some di-

rections in the Cartan of SU(5)2 combine with SU(5)1 to form a higher rank singularity.

To set notation, let t1, . . . , t5 denote the local generators of the Cartan of SU(5)2 subject

to the tracelessness condition t1 + . . . + t5 = 0. Additional massless states of SU(5)2 will

contribute along various directions in the Cartan subalgebra. Some examples of rank one

enhancements can be achieved when the 5 or 10 of SU(5)2 contribute to the massless states

of SU(5)1. Indeed, the 5 contributes when ti = 0, while the 10 contributes when ti + tj = 0

for i 6= j, corresponding to the local enhancements:

SO(10) : ti = 0 (7.21)

SU(6) : ti + tj = 0. (7.22)

Along ti = 0, we find 10 × 2 + 1 = 21 additional states contribute so that the 24 of SU(5)

enhances to the 45 of SO(10). Moreover, along ti + tj = 0, we find 5×2+1 = 11 additional

states so that the adjoint of SU(5) instead enhances to the adjoint of SU(6). A local

enhancement to E7 corresponds to the direction in the Cartan of SU(5)2 where an entire

SU(3) × U(1) subgroup of SU(5)2 combines with SU(5)1. In terms of the local generators

of the Cartan of SU(5)2 this reads:

E7 : t1 + t2 = t3 = t4 = t5 = 0 (7.23)

E′
7 : t4 + t5 = t1 = t2 = t3 = 0. (7.24)

Decomposing various representations of SU(5)2 into irreducible representations of the max-

imal subgroup SU(3) × SU(2) × U(1) yields:

SU(5)2 ⊃ SU(3) × SU(2) × U(1) (7.25)

24 → (8, 1)0 + (1, 3)0 + (3, 2)−5 + (3, 2)+5 + (1, 1)0 (7.26)

10 → (1, 1)6 + (3, 2)1 + (3, 1)−4 (7.27)

5 → (3, 1)−2 + (1, 2)+3. (7.28)

In particular, we conclude that along the loci defined by lines (7.23) and (7.24), the 5

contributes three states (ti = 0 for i ≥ 3), the 10 contributes four states (ti + tj = 0 for

i, j ≥ 3 and i 6= j), and the 24 contributes nine states for a total of 2×10×3+2×5×4+9 =
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109 additional states. Combined with the adjoint of SU(5)1, this indeed yields the 133

expected states of the adjoint of E7.

To be completely explicit, we now present a local model which exhibits the desired

enhancement type. To this end, let z1 and z2 denote two local coordinates in the vicinity

of the local E8 enhancement at the point z1 = z2 = 0. In terms of these coordinates, one

realization of the desired triple intersection is:

t1 = z2(z1 + z2) (7.29)

t2 = z2(z1 − z2) (7.30)

t3 = −4z1z2 (7.31)

t4 = z1(z1 + z2) (7.32)

t5 = z1(−z1 + z2). (7.33)

Along the locus z1 = 0, we note that t3 = t4 = t5 = 0, and t1 + t2 = 0, which corresponds

to a local enhancement of SU(5) to E7. Similarly, along z2 = 0, we obtain another local

enhancement from SU(5) to E7. There are also several curves along which SU(5) enhances

to SU(6). For example, t1 + t3 = z2(z2 − 3z1) vanishes along z2 = 0, and z2 = 3z1. Along

this second locus, the local behavior of the ti’s is:

t1 = 12z2
1 (7.34)

t2 = −6z2
1 (7.35)

t3 = −12z2
1 (7.36)

t4 = 4z2
1 (7.37)

t5 = 2z2
1 . (7.38)

which establishes that no additional states from a 10 or 5 of SU(5)2 beyond those expected

become massless. Thus, the required triple intersection of matter curves is realized by the

local coordinates:

E7 : z1 = 0 (7.39)

E′
7 : z2 = 0 (7.40)

SU(6) : z2 = 3z1 (7.41)

E8 : z1 = z2 = 0, (7.42)

as desired. In this particular case, we note that the local enhancement to E7 may contain

additional matter fields beyond the 27 of E6. In this regard, this example should be viewed

as a starting point for a more complete analysis.

8 Fayet-Polonyi model of supersymmetry breaking

On general grounds, there are likely to be several dynamical mechanisms available which

generate a vev for X consistent with gauge mediated supersymmetry breaking. Rather than

posit the existence of an entirely new sector which would inevitably dilute the predictive
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power of the theory, in this section we show that the anomalous U(1)PQ gauge theory which

has already figured prominently in this paper will in many cases break supersymmetry.

Along these lines, we also show that this sector of the theory can naturally accommodate

a low scale of supersymmetry breaking consistent with the other results of this paper.

The anomalous U(1)PQ gauge theory is effectively a combination of a Fayet model

D-term potential which sets the value of x, and a Polonyi term which sets the value of

F in the vev 〈X〉 = x + θ2F . In this regard, it is important that the U(1)PQ symme-

try is both gauged and anomalous. The Fayet-Iliopoulos parameter ξPQ is determined by

the background flux through the Peccei-Quinn seven-brane. By appealing to a variant

of the Bousso-Polchinski flux-scanning argument of [59], we show that x ∼ ∆min · MX

where ∆min ∼ MX/Mpl is the minimal flux spacing. The fact that the U(1)PQ symmetry

is anomalous is more crucial for the Polonyi term. Indeed, precisely because the U(1)PQ

symmetry is anomalous, instanton effects will generate superpotential terms which violate

the global U(1)PQ symmetry of the low energy theory.

The rest of this section is organized as follows. First, we spell out in field theory terms

what we mean by the Fayet-Polonyi model. Next, we focus on the specific realization of this

model in our context. To this end, we determine the D-term potential of the anomalous

U(1)PQ theory and further show that instanton effects generate a linear superpotential

term which breaks supersymmetry. To complete our analysis, we next show that the Fayet-

Polonyi model breaks supersymmetry at a scale consistent with solving both the µ problem

and strong CP problem. Finally, we show how the bosonic partner of the axion, the saxion

is stabilized in the present class of models. Some additional more technical discussion

of higher order instanton effects and their potential relevance for the axion potential is

deferred to appendix A.

8.1 Generalities of Fayet-Polonyi model

Here we briefly specify in field theoretic terms what we mean by a Fayet-Polonyi model of

SUSY breaking. First we recall each of the two models and then present the hybrid model.

We start with the Fayet model [60].8 This is a model of an N = 1 supersymmetric

U(1) gauge theory coupled to some charged fields X,Y with respective charges +1 and −1.

In this model, the FI parameter ξ is non-zero, and the superpotential is given by:

W = mXY . (8.1)

The physical potential is a combination of the F-term contribution and the D-term contri-

bution:

V =

∣∣∣∣
∂W

∂X

∣∣∣∣
2

+

∣∣∣∣
∂W

∂Y

∣∣∣∣
2

+
1

2
g2D2 (8.2)

where g is the gauge coupling and:

D = |X|2 − |Y |2 − ξ. (8.3)

8See [61–63] for early work on supersymmetry breaking which exploits the presence of related U(1)

symmetries.
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Supersymmetry is preserved only when ∂W/∂X = ∂W/∂Y = D = 0. The F-flatness

conditions require the vev of the fields X,Y to be zero. On the other hand, this is incom-

patible with the vanishing D-term which requires one of the two fields X or Y to cancel the

contribution from the FI term ξ. For large enough ξ (i.e. if ξ ≫ m2/g2) the minimum of

the potential will be dictated by screening the D-term. Without loss of generality, consider

the case where ξ is large a positive so that X attains a non-zero vev. In this case, the top

component of the Y field FY = mX 6= 0 so that supersymmetry is broken. The explicit

value of FY is:

FY = m

√
ξ − m2

g2
. (8.4)

Note this mechanism works even if there are more charged fields and that these additional

fields typically pick up contributions to their masses on the order of m, due to the imperfect

screening of the D-term.

We now turn to the Polonyi model [64]. This is a model of a chiral superfield with a

superpotential of the form

W = κX. (8.5)

Since κ = ∂W/∂X 6= 0, this model breaks supersymmetry because for a generic interacting

field theory where the Kähler potential K(X,X) is non-trivial, this SUSY breaking cannot

be absorbed away by an overall shift in the vacuum energy density.

As its name suggests, the hybrid Fayet-Polonyi model combines elements from both

models. Consider again a theory of an N = 1 supersymmetric U(1) gauge theory coupled to

various charged matter fields. Let X denote one such field. Moreover let us assume that the

U(1) is anomalous and is Higged through the Green-Schwarz mechanism, which in particu-

lar requires the existence of an FI-term ξ. Because the low energy global U(1) symmetry is

anomalous, instanton effects will likely generate U(1) violating terms in the superpotential:

W (X) = κX + . . . (8.6)

where in particular the linear term κ is not zero. Note that κ is expected to be very small,

if it is an instanton generated effect, of the order of Λ2
0exp(−1/g2) for some cutoff mass

scale Λ0. In the application we will have for the PQ brane, the higher powers of X could

also potentially appear in the superpotential but they are much smaller than the leading

term, and so we have effectively a Polonyi-like superpotential. Note that the fact that

the superpotential seems to violate U(1) charge is not inconsistent with gauge symmetry,

because the instanton corrections, captured by κ pick up anomalous U(1) charge exactly

to neutralize the term. The same comment applies to the higher monomials as well. The

mechanism of supersymmetry breaking is now very similar to that of the Fayet model: The

non-vanishing ξ term drives X to have a non-trivial VEV of the order of
√

ξ − a where

|a| ∼ (|W ′W ′′/g2X|)|X|=
√

ξ. The term a also sets the scale for the mass contributions from

the VEV of X to the other fields charged under this U(1) (due to the imperfect screening

of the D-term). In the application below such mass corrections are rather small and do not

make significant contributions. Indeed the first contribution to these mass terms will come

from the coefficient of X2 and if generated by instanton effects will generically be far smaller
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in scale than the linear term. Although ultimately different, see [65] for a related model of

supersymmetry breaking which combines elements from the Fayet and Polonyi models.

8.2 Fayet-Polonyi model from a U(1)PQ seven-brane

In this subsection we describe the explicit realization of the Fayet-Polonyi model based

on a PQ seven-brane. Although the U(1)PQ symmetry can sometimes correspond to a

linear combination of distinct U(1) factors on different seven-branes, this is irrelevant for

the purposes of the present analysis, and we shall therefore always consider the case where

U(1)PQ is realized on a single seven-brane.

Now, as we have seen in previous sections, all of the fields of the MSSM are necessarily

charged under U(1)PQ. Hence, the U(1)PQ seven-brane theory will contain several different

matter curves which will all contribute to the four-dimensional effective theory. The zero

mode content of the four-dimensional theory is then determined by an appropriate choice

of background flux on the GUT model seven-brane, the U(1)PQ seven-brane, and possibly

other seven-branes of the compactification. To set notation, let Ψ denote a generic chiral

superfield charged under U(1)PQ which localizes on a curve ΣΨ, and X a chiral superfield

localized on a curve ΣX which can potentially develop a supersymmetry breaking vev.

Before proceeding to the explicit realization of the Fayet-Polonyi model, we now de-

scribe some general features of the U(1)PQ gauge theory realized on a seven-brane. For

a generic choice of background fluxes on the U(1)PQ seven-brane, the zero mode content

of the theory will be such that the four-dimensional U(1)PQ symmetry is anomalous. As

a consequence, the corresponding gauge boson in the four-dimensional effective theory

will develop a mass due to the Green-Schwarz mechanism. More explicitly, in the eight-

dimensional worldvolume theory of the PQ seven-brane, there is an axion-like coupling

between the RR four-form potential and the U(1)PQ gauge field strength of the form:

LPQ ⊃ M8
∗

∫

R3,1×B3

dC(4) ∧ ∗10dC(4) + M4
∗

∫

R3,1×SPQ

C(4) ∧ FR3,1 ∧ 〈FPQ〉 . (8.7)

Here, FR3,1 and FPQ respectively denote the U(1)PQ field strengths in the four-dimensional

spacetime directions and the Kähler surface SPQ wrapped by the PQ seven-brane. Reducing

to the four-dimensional effective theory, we note that under a U(1)PQ gauge transformation,

the four-form will in general shift by an amount which exactly cancels the contribution

from the anomaly. Letting C denote the four-dimensional superfield associated with the

reduction of the four-form C(4) and VPQ the vector multiplet for the U(1)PQ gauge boson

so that under the gauge transformation VPQ 7→ VPQ + iΛPQ − iΛ†
PQ, C 7→ C + iΛPQ, the

corresponding action in superspace is:

LPQ ⊃
∫

d4θK
(
C + C† − VPQ

)
. (8.8)

where K denotes an appropriate Kähler potential. Expanding in powers of VPQ, this is

given as:

LPQ ⊃
∫

d4θK
(
C + C†

)
− K ′

(
C + C†

)
VPQ +

1

2
K ′′
(
C + C†

)
V 2

PQ + . . . . (8.9)
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Fixing a background value of C as C0 so that C = C0 + c, in terms of component fields,

we conclude that the four-dimensional effective action contains the terms:

LPQ ⊃ 1

2
ξ∗ (∂µc + Aµ)2 + ξ∗DPQ (8.10)

where
√

ξ∗ is a mass scale associated with the PQ seven-brane, and DPQ denotes the

usual auxiliary field of the vector multiplet. In the above, we have dropped irrelevant

constant multiplicative factors of order one which will not play any role in the discussion

to follow. By inspection, the first term in equation (8.10) will contribute to the mass of

the U(1)PQ gauge boson, while the second term contributes to the FI parameter of the

four-dimensional theory.

Depending on the particular flux data through the seven-brane theory, there could

potentially be additional contributions to the effective action. In particular, in subsec-

tion 8.2.1 we show that there is an additional contribution to the FI parameter from fluxes

when the Kähler form is not orthogonal to 〈FPQ〉. Moreover, precisely because the X field

is charged under the anomalous U(1)PQ symmetry, it follows that the phase of the X field

ax studied in section 6 as a candidate axion field will also shift under a U(1)PQ gauge

transformation. Including the contribution from these terms, we have:

LPQ ⊃ |x|2 (∂µax + Aµ)2 +
1

2
ξ∗ (∂µc + Aµ)2 + (ξflux + ξ∗) DPQ. (8.11)

In the following, we shall refer to the net FI parameter as:

ξPQ ≡ ξflux + ξ∗. (8.12)

In general, |ξ∗| ≫ |x|, so that the mass of the U(1)PQ gauge boson will typically be close

to the GUT scale. On the other hand, in subsection 8.2.1 we will show that by scanning

over all fluxes, the minimal non-zero value of the mass scale
√

ξPQ is typically in the range

required for ax to play the role of the QCD axion.

From the perspective of the four-dimensional effective theory, it may at first appear

puzzling that x can develop any vev at all due to the D-term potential. Indeed, since the

gauge boson is very heavy, it can effectively be integrated out. In this context, there is no

D-term potential to speak of. The essential point is that at high energy scales, the D-term

potential is more appropriately written as:

VD = 2παPQ

(
|x|2 − K ′(C + C†) + ξflux

)2
. (8.13)

The condition VD = 0 corresponds to a background field configuration where in general

both x and C develop non-zero vevs. The essential point we will exploit later is that the

vev of x can be tuned to be lower than the mass scale of the PQ gauge boson. The actual

axion will then be given as a linear combination of the phase of x, with a small contribution

from c as well. Indeed, this corresponds to a flat direction of the potential VD. Besides

the axion, the other bosonic component of the corresponding supermultiplet is the saxion.

We now show how the D-term and F-term potentials of the Fayet-Polonyi model can be

generated in the PQ seven-brane theory.
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8.2.1 D-term potential

As shown above, the four-dimensional anomalous U(1)PQ gauge boson will develop a mass

through a Green-Schwarz mechanism via an axion-like coupling between the RR four-

form and the eight-dimensional U(1)PQ field strength. In the four-dimensional effective

theory, the strength of this coupling is proportional to the net flux FPQ through SPQ. The

presence of this flux can induce additional contributions to the FI parameters when FPQ

is not orthogonal to the Kähler form on SPQ. For ease of discussion, we will present this

analysis in the simplified case where there is only a single matter curve ΣX corresponding

to the X field of the U(1)PQ theory.

First recall that the D-term equation of motion for the U(1)PQ seven-brane theory

is [1]:

ωPQ ∧ FPQ =
1

2
ωPQ ∧ δΣX

[µ (σ, σ) − µ (σc, σc)] (8.14)

which holds pointwise on the surface SPQ wrapped by the Peccei-Quinn seven-brane. In the

above, ωPQ denotes the Kähler form on SPQ and FPQ is the internal gauge field strength.

In addition, at each point of ΣX , σ and σc respectively label the scalar component of the

four-dimensional N = 1 chiral superfields X and Xc and µ denotes the natural moment

map pairing defined on ΣX [1]. Expanding about a background gauge field configuration

on ΣX , let Xi denote the zero modes of X with similar conventions for Xc
ic . Integrating

equation (8.14) over the curve ΣX implies:

∫

ΣX

(ωPQ ∧ FPQ) |ΣX
=

1

2

[
∑

i

µ (xi, xi) −
∑

ic

µ
(
xc

ic , x
c
ic

)
]

(8.15)

∼ eX
M2

∗V ol(ΣX)

2

[
∑

i

|xi|2 −
∑

ic

∣∣xc
ic

∣∣2
]

(8.16)

where eX denotes the integral charge of X under U(1)PQ. In the above, we have used

the fact that the zero modes are orthogonal in the sense that µ (xi, xj) = 0 for i 6= j.

Canonically normalizing the kinetic terms for X and Xc, the D-term equation of motion

in the four-dimensional effective theory is:

ξflux ≡
∫

ΣX

(ωPQ ∧ FPQ) |ΣX
=

eX

2

[
∑

i

|xi|2 −
∑

ic

∣∣xc
ic

∣∣2
]

(8.17)

where by abuse of notation, we have labelled the rescaled x’s by the same variable. Equa-

tion (8.17) demonstrates that the FI parameter of the U(1)PQ gauge theory is given by

integrating the background flux over ΣX . Letting VPQ denote the vector multiplet of the

U(1)PQ gauge theory, in four-dimensional N = 1 superspace, the effective action for the X

zero modes contains the terms:

L
(0)
PQ ⊃

∫
d4θ

[
(Xi)

† etVPQXi +
(
Xc

ic

)†
e−tVPQXc

ic +
2t

eX
ξfluxVPQ

]
(8.18)

where t = eX · gPQ/2. Returning to equation (8.12), we conclude that the net FI term is

given by the sum of the bulk contribution ξ∗, and contributions from matter curves, ξflux.
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Having identified the origin of the Fayet-Iliopoulos term in the anomalous U(1)PQ

theory, the D-term potential is therefore given by:

VFayet = 2παPQ · D2
PQ = 2παPQ ·

(
|X|2 +

∑

Ψ

eΨ |Ψ|2 − K ′(C + C†) + ξflux

)2

(8.19)

where αPQ is the fine structure constant of the U(1)PQ gauge theory, ξPQ is given by

equation (8.12), the Ψ’s denote all fields besides X charged under U(1)PQ, and eΨ denotes

the integral charge of Ψ in a normalization where eX = 2. Here, we have also included the

presence of the field C.

8.2.2 F-term potential

In this subsection we sketch the form of the superpotential generated by Euclidean three-

branes wrapping a del Pezzo surface SPQ. Instanton effects in type II string theory have

recently been investigated, for example, in [66–68]. Particular applications to local F-

theory models have been studied in [27, 28]. For simplicity, we shall assume that instanton

effects from Euclidean three-branes wrapping other Kähler surfaces in the geometry are

sufficiently small that they can safely be neglected. Instantons will generically contribute

to any U(1) seven-brane theory with matter localized on curves. To see why this is so,

consider the reduction of the eight-dimensional seven-brane theory to the six-dimensional

theory defined by one such matter curve. The net contribution to the six-dimensional gauge

anomaly is proportional to TrF 4 so that all contributions to the anomaly will contribute

with the same sign. Because this symmetry is anomalous, we expect instantons of the

six-dimensional theory to contribute to the effective superpotential.

Of course, the particular form of the instanton generated superpotential will depend

on the zero mode content of the four-dimensional effective theory. The k-instanton sector

contribution to the superpotential is given by summing over all internal fluxes of k Eu-

clidean three-branes wrapping the surface SPQ. Letting X1, . . . ,Xp denote the various zero

modes of the four-dimensional effective theory, the net contribution from instantons is:

W tot
inst =

∑

I,k,finst,k,m

cI,k,finst,k,m
qk · wν(finst,k,I )XI , (8.20)

where I = (i1, . . . , ip) is a multi-index, and XI ≡ Xi1
1 · · · X

ip
p . Letting τPQ denote the

complexified gauge coupling constant of the PQ gauge theory and τIIB the axio-dilaton,

q = exp(2πiτPQ) is the generic instanton contribution from a three-brane wrapping SPQ,

and w = exp(2πiτIIB) is a contribution which depends on the internal instanton number

ν(finst,k,I) through a given three-brane configuration defined by the supersymmetric inter-

nal flux finst,k,I. Here, we have indicated the schematic form of the contribution, because

in general F-theory backgrounds, τIIB will have non-trivial position dependence. In such

cases, the contribution from the analogue of w will correspond to the integration of τIIB

against the instanton density defined by the internal flux.

The background choice of fluxes can in many cases lead to a Polonyi-like superpotential,

and here we shall assume that this is realized in the present class of models. In the related
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explicit example of [27], it was shown that this is indeed the case for a configuration of

seven-branes wrapping appropriate del Pezzo surfaces which intersect along a rigid genus

zero matter curve. When a single zero mode X localizes on this curve, instantons of the

higher dimensional gauge theory will generate the leading order superpotential terms:

W tot
inst = M2

PQκ1qX + O(q2). (8.21)

where the κi correspond to moduli dependent worldvolume determinant factors, and we

have also absorbed the contribution from w into κi as well. More generally, for an appro-

priate choice of background flux through the PQ seven-brane, a similar analysis establishes

that this same contribution will also be present even when additional zero modes localize

on other curves. Although the other fields of the MSSM are charged under U(1)PQ, our

expectation is that these instanton effects will be dominated by other contributions to the

tree level superpotential. Some additional technical details on this point as well as some

discussion on higher order instanton corrections are deferred to appendix A.

Including all terms which involve a non-trivial dependence on X, the full superpotential

is therefore of the form:

W (X,Y ) = λXY Y ′ + M2
PQκ1qX + O(MPQq2) + O(q) (8.22)

In the above, the O(MPQq2) term corresponds to possible multi-instanton contributions

involving only the X field, and the O(q) term refers to possible contributions involving

MSSM fields. At leading order, the F-term potential is therefore:

VPolonyi =

∣∣∣∣
∂W (X,Y )

∂X

∣∣∣∣
2

+

∣∣∣∣
∂W (X,Y )

∂Y

∣∣∣∣
2

+

∣∣∣∣
∂W (X,Y )

∂Y ′

∣∣∣∣
2

(8.23)

=
∣∣λY Y ′ + M2

PQκ1 · q
∣∣2 +

∣∣λXY ′∣∣2 + |λXY |2 . (8.24)

8.3 Fayet-Polonyi model

We now determine the scale of supersymmetry breaking in our realization of the Fayet-

Polonyi model on a PQ seven-brane. In particular, we show that this theory can accom-

modate the vev of X required for the gauge mediation scenario explored in this paper.

The effective potential for the X field is given by the sum of VFayet and VPolonyi:

VPQ =VFayet + VPolonyi (8.25)

=2παPQ ·
(
|X|2 +

∑

Ψ

eΨ |Ψ|2 − K ′(C + C†) + ξflux

)2

(8.26)

+
∣∣λY Y ′ + M2

PQκ1 · q
∣∣2 +

∣∣λXY ′∣∣2 + |λXY |2 . (8.27)

By inspection, VPQ admits critical points where all fields other than X and C vanish.

Because a non-zero vev for such fields would break at least part of the GUT group, we

shall only consider vacua where X and C have non-trivial vevs.
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Returning to equation (8.21), ∂W/∂X 6= 0 so that supersymmetry is broken. Working

to leading order in q, the vev 〈X〉 = x + θ2F satisfies:

|x|2 = ξPQ (8.28)

F

M2
PQ

= κ1 · q. (8.29)

To estimate the value of x, recall that in terms of the background field strength on SPQ,

we have:

|x|2 = ξPQ = ξflux + ξ∗. (8.30)

Note that in the absence of any matter curves, the Hermitian Yang-Mills equations on SPQ

would imply:

ωPQ ∧ FPQ = 0. (8.31)

The presence of the matter curves allows ωPQ ∧ FPQ to deviate away from zero. In vacua

where x is non-zero, we therefore expect that the background U(1)PQ gauge field config-

uration will effectively adjust itself so that ξPQ is as close to zero as possible. At generic

points of ΣX , the field strength FPQ will scale as M2
X . Assuming that the Planck length

is the minimal distance over which FPQ can vary by the amount M2
X , it follows that the

minimal non-zero value of ξPQ which can be attained is:

ξmin = ∆2
min · M2

X (8.32)

where:

∆min =
MX

Mpl
∼ 10−3.5 (8.33)

is the effective lattice spacing for Peccei-Quinn flux configurations. Throughout this paper,

we have assumed that MX ∼ 1015.5 GeV and Mpl ∼ 1019 which implies:

|x| ∼ ∆min · MX ∼ 1012 GeV. (8.34)

Remarkably, this simple estimate is in accord with the requirements of both gauge media-

tion and axion physics! Recall that the solution of µ/Bµ problem using the Giudice-Masiero

operator required that |x| /MX ≪ 1. We now see that this is related to

|x|
MX

∼ ∆min ∼ MGUT

Mpl
≪ 1. (8.35)

Indeed, this mild hierarchy between the GUT scale and the Planck scale played a key role

in some of the estimates of physical quantities (for example the neutrino masses) in [2].

Computing the scale of supersymmetry breaking
√

F is somewhat more delicate be-

cause the instanton action depends exponentially on the volume of the Kähler surface SPQ.

For this reason, we shall instead determine the mass scale MPQ required in order to achieve

the value F ∼ 1017 GeV2. To estimate the size of the instanton factor, we introduce a char-

acteristic volume factor V so that q = exp
(
−M4

∗ · V
)
. Similarly, we shall introduce a
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characteristic mass scale M ∼ V −1/4. Returning to equation (8.29), the magnitude of F is

then:
|F |

M2
PQ

= exp
(
−M4

∗ · V
)

= exp

(
− 2π

αGUT

M4
GUT

M4

)
(8.36)

where in the first equality we have set κ1 = 1, and in the second equality we have used the

relation between the volumes of surfaces and gauge couplings for seven-branes discussed

in [1, 2]. Assuming that MPQ ∼ M , solving for M thus yields:

M

MGUT
=

(
αGUT

4π
× W

(
4π

αGUT
· M4

GUT

F 2

))−1/4

, (8.37)

where W is the Lambert W -function. Setting αGUT ∼ 1/25, F ∼ 1017 GeV2 and MGUT ∼
3 × 1016 GeV, we find:

M

MGUT
∼ 1.4. (8.38)

In other words, with only a mild tuning of parameters in the geometry, the anomalous

U(1)PQ gauge theory achieves the scale of supersymmetry breaking required to remain

in accord with weak scale physics. Returning to equation (8.36) and using the value

|F | ∼ 1017 GeV2 the instanton action is therefore given by:

|q| ∼ |F |
M2

PQ

∼ 5 × 10−17. (8.39)

To conclude this subsection, we note that more generally, the value of κ1 could deviate

from an order one number, so there is a certain degree of tunability in such instanton

contributions. Indeed, in general F-theory compactifications, the value of τIIB can vary

along the three-fold base B3.

8.4 Stabilizing the radial mode

In the previous sections we have seen that the parameter space of F-theory GUTs is in

principle compatible with a non-zero vev for X and q of the form:

|X| ∼ 1012 GeV, (8.40)

log |q| ∼ log
F

M2
PQ

≃ −38. (8.41)

On the other hand, the contribution from just the Polonyi terms and D-term potential

does not by itself stabilize the PQ invariant product:

X̂ ≡ qX. (8.42)

Indeed, at low energy scales, there is no D-term potential, as the effects of the U(1)PQ

gauge boson have been integrated out, leaving behind only an accidental global U(1) at

low energies. The phase of X̂ corresponds to the QCD axion, which develops a potential

through QCD instanton effects, and possibly instanton contributions from the PQ seven-

brane. The norm corresponds to the other bosonic component of the chiral multiplet which

is the saxion.
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In this section we discuss how the norm of X̂ can develop a vev compatible with the su-

persymmetry breaking conditions specified earlier. Non-trivial contributions to the Kähler

potential in theories with an anomalous U(1) symmetry can often serve to stabilize the

vevs of modes such as X̂ which are not fixed by the Polonyi term alone [44]. Our aim here

will be to clarify the form of fine-tuning necessary to achieve the required energy scales. To

this end, we first phrase in general terms the requisite conditions on the form of the Kähler

potential, and then show in a well-motivated example that these conditions can be met.

To analyze the dynamics of X̂, it is convenient to consider the unbroken PQ seven-

brane gauge theory, which will contain the dynamical fields X and q. In principle, the

FI parameter ξflux should also be included as a dynamical field, but this mode involves

the dynamics of the full ten-dimensional theory, and so for our purposes can effectively be

treated as a frozen parameter.

We begin by discussing the general features of the system defined by q, X, and the

PQ gauge boson. The holomorphic coupling τ of the PQ seven-brane theory is related to

q through:

q = exp(2πiτ) ≡ exp(−S). (8.43)

For simplicity, we work in units where the PQ charge of the X field is +1, so that under a

gauge transformation which shifts the PQ vector multiplet as:

VPQ → VPQ − Λ − Λ†, (8.44)

the X field transforms as:

X → exp (Λ) · X. (8.45)

Gauge invariance of the product qX then requires q to transform as:

q → exp (−Λ) · q. (8.46)

or:

S → S + Λ. (8.47)

The theory with the PQ gauge boson can then be parameterized in terms of the contribution

from the Kähler potential and superpotential for S and X:

L ⊃
∫

d4θK(X†eVPQX;S + S† + VPQ) + ξfluxVPQ +

∫
d2θM2

PQe−SX + h.c., (8.48)

where the general form we have taken is automatically invariant under gauge transforma-

tions.

To leading order, we approximate K as the sum of two contributions, KX and KS such

that:

K(X†eVPQX;S + S† + VPQ) = KX(X†eVPQX) + KS(S + S† + VPQ). (8.49)

Expanding to quadratic order in VPQ, the mass of the PQ gauge boson is given as:

M2
U(1)PQ

= X†X · K ′
X +

(
X†X

)2
· K ′′

X + K ′′
S , (8.50)
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where the primes on KX and KS respectively denote derivatives of the Kähler potentials.

To leading order, the mass of the PQ gauge boson is controlled by K ′′
S , which can in

principle be tuned from a scale close to the GUT scale, to somewhat lower values.

Since the mass of the PQ gauge boson is far heavier than the scale of supersymmetry

breaking, we can view the D-term potential as imposing a constraint on the norms |X| and

|q|. Explicitly, the D-term constraint requires:

X†X · K ′
X + K ′

S + ξflux = 0. (8.51)

Assuming K ′
X > 0 in the regime of interest (which will be the case when KX is to leading

order given by the canonical Kähler potential), note that ξflux > 0 favors field configurations

such that X = 0 and K ′
S ≃ −ξflux. Indeed, this is just a rephrasing of the Bousso-Polchinski

flux scanning argument that K ′
S and ξflux should both be large and nearly cancel in order

for |X| to remain below the GUT scale.

Next consider the F-term contribution to the potential:

VF−term =
∣∣M2

PQe−S
∣∣2
(
gXX + gSS |X|2

)
, (8.52)

The overall multiplicative factor by exp(−S − S†) indicates the tendency for this mode to

approach S → ∞, which is a possible “runaway direction”. This is counteracted, however,

by the D-term constraint of equation (8.51). We are interested in the form of VF−term

such that |X| is small in M∗ units, and S is large. This can be achieved provided the

contributions from gXX and gSS |X|2 are roughly comparable in size. Assuming a roughly

canonical form for the Kähler potential of X, this means that the Kähler metric gSS must

be small in M∗ units so that |X|2 /gSS is comparable to gXX . Note, however, that gSS also

enters into the mass of the PQ gauge boson, and so cannot be too small.

The mass of the mode stabilized by VF−term is naturally close to the weak scale. Indeed,

the characteristic mass scale for fluctuations of X̂ are given as:

m2
bX
∼
∣∣M2

PQe−S
∣∣2 gSS =

∣∣∣∣∣
F

MU(1)PQ

∣∣∣∣∣

2

∝ ∆2
PQ. (8.53)

Thus, we can naturally expect the mass of the radial mode to be determined by the scale

of the PQ deformation. The precise numerical coefficient depends on details of precisely

how the vevs of X and q are fixed, but the basic point remains that the mass of the radial

component is near the weak scale, while the phase, corresponding to the axion will have a

much lower mass induced by QCD instanton effects.

Having spelled out the general form of the required conditions, we now show that

well-motivated Kähler potentials KX and KS exhibit the behavior required to achieve the

desired minimum. This will also help to clarify at least in this particular example the

precise type of fine-tuning at work in the Bousso-Polchinski flux scanning argument. For

simplicity, we consider the case where the Kähler potential of S is given as:

KS = −M2
∗ log(S + S†). (8.54)
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This type of logarithmic behavior for KS is typically present for complex surfaces which

contract to a point at infinite distance in moduli space. A different form based on a power

law dependence is instead more natural if this contraction occurs at finite distance in

moduli space. In addition, we shall consider a roughly canonical form for KX which allows

for higher order corrections:

KX = AX†X + B

(
X†X

)2

M2
X

+ O

((
X†X

)3

M4
X

)
, (8.55)

where the suppression scale MX is associated with integrating out massive modes of size

MX localized on the X curve. The specific value of the coefficient B will in general receive

corrections of both signs. In the context of similar couplings between X and MSSM fields,

the dominant contribution of this type is from heavy PQ gauge boson exchange. In the

context of purely X contributions, however, the somewhat lower mass scale MX allows for

a more general possibility.

We now proceed to analyze the form of the effective potential in this case. First consider

the special case where we drop all higher order corrections to KX in equation (8.55). The

form of the D-term constraint is now:

A |X|2 − M2
∗

S + S† + ξflux = 0 (8.56)

while the F-term potential is given as:

VF−term = M4
PQ exp(−S − S†)

(
1

A
+ (S + S†)2

|X|2
M2∗

+ O
(
|X|4

))
, (8.57)

where VF−term is to be viewed as a potential for the mode unfixed by the D-term constraint.

Parameterizing the form of VF−term in terms of |X|, we obtain:

VF−term = M4
PQ exp

(
− M2

∗
A |X|2 + ξflux

)
·
(

1

A
− M2

∗
A |X|2 + ξflux

|X|2
M2∗

+ . . .

)
(8.58)

≃ M4
PQ exp

(
− M2

∗
ξflux

)
·
(

1

A
+

(M2
∗ − ξflux)

ξ2
flux

|X|2 + . . .

)
, (8.59)

where we have dropped all terms of order |X|4 to obtain a consistent approximation which

neglects the terms proportional to B in KX . The form of VF−term is quadratic, leading

to a stable minimum at |X| = 0. To leading order, this is encouraging, because we are

interested in potentials with X stabilized at values below the GUT scale.

Including higher order corrections can shift the minimum of VF−term so that a small

non-zero vev for X is indeed realized. Including the first correction proportional to B and

expanding to order |X|4 now yields:

VF−term ≃ M4
PQ exp

(
− M2

∗
ξflux

)
·
(
α + β |X|2 + γ |X|4 + . . .

)
, (8.60)
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Veff HxL- Vmin HGeV4L

Figure 3. Plot of the effective potential for the saxion. With notation as in section 8.4, the specific

choice of parameters used in this plot are M∗ = 1017 GeV, MX = 1015.5 GeV, A = 1, B = 1.425.

By construction, the value of B has been chosen so that the minimum is located at x∗ = 1012 GeV.

The shallow variation of the potential as a function of energy scale illustrates that the mass of this

radial mode is much smaller than 1012 GeV, and is instead closer to the weak scale.

where the coefficients α, β and γ are:

α =
1

A
(8.61)

β =
(M2

∗ − ξflux)

ξ2
flux

− 4B

A2

1

M2
X

(8.62)

γ =
A

ξ4
flux

(
(M2

∗ − ξflux)
2 − M4

∗
2

)
− 2B

A2

M2
∗

M2
X · ξ2

flux

+
16B2

A3

1

M4
X

. (8.63)

An important feature of the above relations is that depending on the size of B, the coef-

ficient β can be either positive or negative. In particular, this illustrates that provided B

is large enough, we can expect a shift in the minimum of VF−term to a small, nearby value

x∗ given by:

|x∗|2 =
A2M2

Xξflux + 4Bξ2
flux − A2M2

XM2
∗

2A3M2
X + 32

B2ξ2
flux

AM2
X

− 4ABM2∗ − 4A3M2
X

M2
∗

ξflux
+

A3M2
X

M4
∗

ξ2
flux

. (8.64)

To obtain representative values for the size of the various coefficients, note that the

mass scale MX ∼ 1015.5 GeV is typically somewhat smaller than M∗ ∼ 1017 GeV. As a
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representative example, we shall take:

MX

M∗
∼ 10−1.5. (8.65)

Numerically, the value of ξflux is fixed by the condition that the value of S generates an

appropriate instanton action. Taking the rough value specified by equation (8.41), this

imposes the condition set by the D-term constraint:

ξflux ∼ M2
∗

76
. (8.66)

Achieving the required value of |x∗| ∼ 1012 GeV then leads to a specific relation between A

and B. For example, with MX ∼ 1015.5 GeV and M∗ ∼ 1017 GeV and A = 1, B ∼ 1.4. The

coefficient A is typically a number somewhat larger than one, since the kinetic term for X

scales as A ∼ M2
∗V ol(ΣX), which is naturally on the order of 100 − 1000. When A ∼ 100,

we instead find B ∼ 1.4× 104. Although this constitutes a fine-tuning, note that the ratio

B/A2 remains an order one number.

9 Region of MSSM parameter space

In previous sections, we have shown that low energy considerations constrain the UV

boundary conditions for the supersymmetry breaking sector. In particular, we have found

that for a broad class of F-theory compactifications, the vev 〈X〉 = x + θ2F satisfies

crude constraints from the weak scale when x ∼ 1012 and F ∼ 1017 GeV2. Based on such

considerations, we can deduce that if supersymmetry breaking is communicated to the

MSSM via gauge mediation, then the LSP will be the gravitino. In a purely top down

approach, this level of analysis is essentially all that can be obtained with any degree of

certainty. Indeed, deriving detailed features of the low energy spectrum would require

specifying all relevant interaction terms in both the F- and D-terms, which at a purely

practical level may not even be feasible.

Even if such a computation were in principle possible, there is no guarantee that the

resulting low energy physics would match to observation. Adhering to the bottom up

approach advocated in the Introduction, in this section we show that simply achieving the

correct low energy behavior in the Standard Model strongly constrains both the sparticle

spectrum, as well as properties of the Higgs potential. Because we do not know their

precise values, our strategy will be to scan over a range of UV boundary conditions in

gauge mediation models close to the crude values specified in previous sections. In addition,

we also include the effects of the one parameter deformation away from gauge mediation

determined by heavy U(1)PQ gauge boson exchange. We find that over this region, some

parameters of the low energy theory do not vary much, while others are more sensitive to

high energy inputs. To simplify the presentation, we shall confine our discussion to the

case of a single vector-like pair of messenger fields in the 5 ⊕ 5 of SU(5). The primary

change in increasing the number of messengers is that as the number of messenger fields

increase, the NLSP can transition from the bino-like neutralino to the stau.

– 47 –



J
H
E
P
0
9
(
2
0
0
9
)
0
7
9

To determine the low energy behavior of the theory, we have developed a small modi-

fication of the program SOFTSUSY [29]. Once an appropriate subset of UV boundary condi-

tions has been specified, SOFTSUSY performs a renormalization group flow of the parameters

of the theory down to the weak scale, adjusting the values of parameters such as the µ and

Bµ terms as well as tan β near the weak scale to remain consistent with electroweak symme-

try breaking. More precisely, this is accomplished by requiring that the masses squared for

the Higgs fields develop a suitable tachyonic value. The program then evolves these param-

eters back up to the messenger scale, and iterates this procedure until the results of these

adjustments converge. In a certain sense, this represents a microcosm for the entire bottom

up approach to string phenomenology. Indeed, the reason why the bottom up approach

is in principle quite predictive is that while crude considerations from UV or IR physics

may only serve to partially fix some details of the theory, iterating back and forth between

high and low scale physics can effectively constrain both sectors to a high level of precision.

Indeed, using this fact, we will be able to extract remarkably detailed information which

directly correlates the high energy behavior of the theory with low energy physics.

The remainder of this section is organized as follows. In subsection 9.1, we specify in

greater detail the UV boundary conditions which we shall scan over, including contributions

from heavy U(1)PQ gauge boson exchange. Next, we turn to the low energy behavior of

the theory in subsection 9.2. In particular, we show that achieving consistent electroweak

symmetry breaking effectively allows us to reliably extract the value of µ and tan β near

the scale of electroweak symmetry breaking. Having determined the precise values of all

UV boundary conditions, we next present the low energy spectra for this class of models.

In nearly all gauge mediation models, the LSP is the gravitino, and our situation is no

different.9 Similarly, with a single vector-like pair of messenger fields in the 5⊕ 5 of SU(5),

for the most part, the NLSP is given by a bino-like neutralino, although the one parameter

deformation from gauge mediation can also allow the stau to become the NLSP. Finally,

we conclude this section with a brief discussion of the mini-hierarchy problem. As in most

models, we find that a fine-tuning on the order of one part in a hundred is required to

remain in accord with present experimental bounds, and including our deformation away

from gauge mediation appears to only improve this situation slightly.

9.1 UV boundary conditions

The low energy content of any mediation model is completely fixed once all soft breaking

parameters have been specified at the messenger scale. For gauge mediation models, this

amounts to specifying the number of messenger fields, the messenger mass scale(s) Mmess,

the gaugino mass unification scale Λ = F/x, and the values of µ, Bµ and tan β. The PQ

deformation can also contribute to the soft terms, and in certain cases will lead to important

deviations from the usual predictions of gauge mediation. As explained in subsection 4.2,

the size of this contribution is a priori not fixed by purely local considerations, and it is

therefore appropriate to scan over the allowed range of soft mass terms to the Higgs fields

9For an interesting recent example of a gauge mediation scenario where the gravitino is not the LSP,

see [69].
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Hi and all other chiral superfields Φ of the MSSM induced by the PQ deformation:

δPQm2
Hi

(Mmess) = 2∆2
PQ (9.1)

δPQm2
Φ(Mmess) = −∆2

PQ (9.2)

where ∆PQ denotes the mass scale associated with the PQ deformation, and the relative

sign and magnitude is completely fixed by the relative U(1)PQ charges of these fields. The

UV boundary conditions for our model are given by:

Mmess ∼ 1011.5 − 1012.5 GeV (9.3)

Λ ∼ 105 − 106 GeV (9.4)

Bµ(Mmess) = 0 (9.5)

µ ∼ ±102 − 103 GeV (9.6)

∆PQ ∼ 0 − 103 GeV. (9.7)

In addition, the A-terms vanish at the messenger scale. In the above, our conventions for

the sign of the µ term are the same as in [70]. Here, we have specified all requisite inputs

for the theory at the messenger scale, and have also included a potential range of values

over which we shall perform our scan of UV boundary conditions. Because these boundary

conditions completely fix the soft breaking parameters of the MSSM, some points in this

parameter space may not be consistent with current experimental bounds on the mass of

either the Higgs or the sparticles of the MSSM.

9.2 Constraining the MSSM

To extract detailed properties of the low energy spectrum which are consistent with elec-

troweak symmetry breaking, we have used the SOFTSUSY package [29], and have also in-

cluded a small modification which incorporates the specific form of the PQ deformation in

the present class of models. The inputs at the messenger scale are given in terms of Mmess,

Λ, tan β(Mmess), ∆PQ and the sign of the µ term. Once these parameters are fixed, all

other UV boundary conditions are automatically adjusted by the algorithm to remain in

accord with electroweak symmetry breaking. A cursory inspection of the output reveals

that the spectrum is relatively insensitive to the value of Mmess over the range of values

1011.5−1012.5. With little loss of precision, it is therefore sufficient to fix Mmess = 1012 GeV.

Similarly, for the most part the sign of µ does not appear to significantly alter the results

of our analysis, and we shall therefore restrict to the case µ > 0.

Within the three-dimensional subspace parameterized by Λ, tan β(Mmess) and ∆PQ,

only a two-dimensional subspace will in general preserve the required boundary condition

Bµ(Mmess) = 0. To simplify our analysis, we fixed a particular value of either Λ or ∆PQ and

then scanned over the remaining two parameters to determine the value of tan β(Mmess).

While the value of tan β(Mmess) does depend on Λ, it is relatively insensitive to the value

of ∆PQ. To determine the effect of the PQ deformation, it therefore suffices to fix all other

UV boundary conditions, and simply vary the size of ∆PQ.

The particular choice of values for Λ ∼ 105 − 106 GeV which we scan over is in large

part a consequence of current experimental bounds on the mass of the lightest neutral
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Figure 4. Plot of tanβ at the scale MS , the scale at which electroweak symmetry breaking

boundary conditions are imposed, as a function of log10(Λ/GeV). By inspection, tanβ grows

logarithmically with the gaugino mass unification scale. The vertical line at the left of the plot

(Λ = 105.08 GeV) indicates the experimentally excluded region based on current bounds on the

mass of the Higgs.

Higgs h0 (114.5 GeV). In addition, the size of the deformation ∆PQ ∼ 0− 1000 GeV is also

bounded above by the requirement that none of the squarks or sleptons should develop a

tachyonic mode near the weak scale. We note that as Λ increases, the soft scalar masses

will also increase, so that larger PQ deformations become viable.

We present the results of various one parameter scans over Λ and ∆PQ. One scan is

performed at vanishing PQ deformation so that ∆PQ = 0, with Λ ranging from 105 to

106 GeV. At the low end of this scan, the resulting Higgs mass in fact lies below the exper-

imental bound set by LEP that mh0 > 114.4 GeV at the 95 percent confidence level [71].

The mass of the Higgs monotonically increases with Λ, and saturates the value 114.5 GeV

at Λ = 105.08 GeV. In figure 4 we display tan β(MS) as a function of Λ. Here, MS denotes

the scale at which electroweak symmetry breaking boundary conditions are imposed. By

inspection, tan β increases logarithmically with Λ from ∼ 25 near Λ = 105.08 GeV to ∼ 38

near Λ = 106 GeV so that tan β(MS) ∼ 31.5 ± 6.5. In the present single messenger model,

the NLSP is given by a bino-like neutralino, while the stau is the next lightest MSSM

sparticle. See figure 5 for a plot of the bino mass, stau mass and Higgs mass as a function

of Λ. In this same plot, we also present the value of the µ term as a function of Λ. At

its lowest value, µ = 102.8 ∼ 630 GeV for Λ = 105.08 GeV, and the value of µ increases to

103.6 ∼ 4000 GeV for Λ = 106 GeV.
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Figure 5. Plot of the µ term, stau mass, bino mass and Higgs mass as a function of the gaugino

mass unification scale Λ in a single messenger model with vanishing PQ deformation. The vertical

line at the left (Λ = 105.08 GeV) indicates the experimentally excluded region based on bounds on

the mass of the Higgs.

We have also scanned over a range of values for the PQ deformation with Λ kept

fixed. To leading order this deformation does not alter the masses of any gauginos of

the theory but does lower the masses of all sleptons and squarks whilst increasing the

soft masses squared of the Higgs fields. Recall that in order for the Higgs potential to

contain a tachyonic mode, the mass squared of the Higgs fields undergoes a renormalization

group flow from positive values to negative values. As the PQ deformation increases, the

magnitude of this tachyonic mode consequently also decreases.

As a representative example, we scanned over the PQ deformation for a fixed value

of Λ = 5 × 105 GeV. This scan begins at ∆PQ = 0 and proceeds up to ∆PQ = 102.9 GeV.

For larger values of ∆PQ, the corresponding effective potential for the sfermions contains a

tachyonic mode. Over this entire range, the resulting value of tan β(MS) is 34± 1, and the

mass of the lightest Higgs h0 is approximately 123 ± 3 GeV. See figure 6 for a plot of the

parameter µ as a function of ∆PQ. As the value of ∆PQ increases, µ decreases slightly. A

more dramatic consequence of the PQ deformation is shown in figure 7 which shows that

the mass of the stau becomes nearly equal to the bino at large values of the PQ deformation.

For smaller values of Λ, the stau can become the NLSP at large values of the PQ de-

formation. Performing a scan over the PQ deformation at the value Λ = 1.3× 105 GeV, we

find that ∆PQ can range from zero up to 290 GeV, beyond which point a tachyon develops

in the scalar potential. Over this entire range, the resulting value of tan β(MS) is 26 ± 1,

and the mass of the lightest Higgs h0 is 115 ± 1 GeV. The profile of the parameter µ is
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Figure 6. Plot of the parameter µ as a function of the PQ deformation ∆PQ in a single messenger

model with Λ = 5 × 105 GeV. Large values of ∆PQ produce a tachyon in the effective potential,

which appears near the vertical line at ∆PQ = 102.9 GeV.

similar in shape to that given in figure 6, although the ranges of the scales are different. At

large values of the PQ deformation, the value of µ is 550 GeV. In figure 8 we plot the four

lightest sparticles and find that at a value of ∆PQ = 243 GeV, the mass of the stau and

bino-like neutralino are identical. For a narrow range of values, the stau becomes lighter.

In addition, the mass of the right-handed selectron and smuon become comparable in mass

to the bino-like neutralino at large PQ deformation. This example explicitly shows that

for a fixed value of Λ, increasing the size of ∆PQ can allow the stau to become the NLSP.

It is also of interest to compare the entire sparticle spectrum in the limit of vanish-

ing PQ deformation, as well as in the presence of maximal PQ deformation. Because the

resulting value of tan β(MS) is relatively insensitive to PQ deformations, in figure 9 we

directly compare the sparticle spectrum at Λ = 1.3 × 105 GeV for ∆PQ = 0 with the spec-

trum obtained with a PQ deformation of ∆PQ = 290 GeV. Beyond this value, a tachyonic

mode is generically present in the sfermion effective potential. At such large values of the

PQ deformation, we observe that the stau is now the NLSP. In fact, this plot also shows

that the masses of the right-handed selectron (ẽR) and smuon (µ̃R) also have significantly

lower masses, which are nearly comparable to the mass of the bino-like lightest neutralino(
χ̃0

1

)
. While we certainly expect the scalar masses of the MSSM to receive corrections

from the PQ deformation, it is also of interest to note that the Higgs-like charginos (χ̃±
2)

also decrease in mass. This is primarily due to the fact that the PQ deformation also alters

the Higgs potential.
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Figure 7. Plot of the stau mass and bino mass as a function of the PQ deformation in a single

messenger model with Λ = 5 × 105 GeV. Whereas the mass of the bino remains constant, for large

values of ∆PQ, the stau mass is comparable in mass to the bino. Near this region, the effective

potential develops a tachyonic mode at ∆PQ = 102.9 GeV, which is indicated by the vertical line at

the right of the plot.

As mentioned above, large values of the PQ deformation decrease the magnitude of

the tachyonic mode in the Higgs potential, which alleviates some of the fine-tuning present

in the Higgs sector. To a certain extent, this fine-tuning can be quantified as in [72, 73].

Using an existing routine in SOFTSUSY, we have computed the amount of fine-tuning in the

mass of the Z boson with respect to µ using the definition adopted in [72]:

δµ =

∣∣∣∣
∂ log M2

Z

∂ log µ

∣∣∣∣ . (9.8)

In general, while the PQ deformation appears to decrease the amount of fine-tuning, it

does not address in any substantial way the mini-hierarchy problem. This is because at

larger values of the PQ deformation, we generically encounter a tachyonic mode in the

slepton effective potential which limits the amount of fine-tuning that this deformation can

eliminate. For example, with Λ = 1.3 × 105 GeV, we find δµ = 2.3 × 102 when ∆PQ = 0,

while δµ = 1.5 × 102 for ∆PQ = 290 GeV. In this way, the usual problem of fine-tuning at

the percent level is present here as well. Nevertheless, with the aim of potentially further

reducing the amount of fine-tuning present in this class of models, it would be interesting

to determine whether more elaborate F-theory based models could contribute additional

soft masses to the Higgs fields, without introducing any effect on the other soft masses of

the MSSM. While we do not have an explicit realization of such a scenario, we have also
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Figure 8. Plot of the stau, smuon, selectron and bino masses as a function of the PQ deformation

in a single messenger model with Λ = 1.3 × 105 GeV. Whereas the mass of the bino remains

constant, for large values of ∆PQ, the other sparticles become lighter, and for a narrow range of

values, the stau can in fact become the NLSP. The mass of the stau equals the mass of the bino

(172GeV) at ∆PQ = 243GeV. Near this region, the effective potential develops a tachyonic mode

at ∆PQ = 290GeV, which is indicated by the vertical line at the right of the plot.

considered the phenomenology of models where the sign of the PQ deformation is reversed

so that the soft masses squared of the sleptons and squarks increase while those of the

Higgs fields decreases. In this case, the masses of the gauginos effectively remain constant,

and the sfermions all increase in mass. This alternate PQ deformation also increases the

amount of fine-tuning in the Higgs potential. For example, along this branch, we find that

with Λ = 1.3 × 105 GeV and ∆PQ = 104 GeV, the fine-tuning measure δµ = 9.7 × 104, and

as is to be expected, the slepton and squarks achieve masses of order 104 GeV. For larger

values of ∆PQ, a perturbative analysis breaks down. Nevertheless, this at least suggests

that for large values of ∆PQ along this branch, many of the scalar bosons of the spectrum

could effectively remain out of present observational reach, but not too far away, perhaps

realizing a less extreme version of the split supersymmetry scenario advocated in [74–76].

Having determined detailed features of the sparticle spectrum, it is important to ex-

tract potential experimental signatures from this class of models. One immediate avenue

of interest would be to determine possible collider signatures at the LHC [77]. Indirect

cosmological tests could also serve to constrain the behavior of this class of models. As one

example, we note that the mass of the gravitino is roughly given by:

m3/2 =

√
4π

3

|F |
Mpl

∼ 10−2 − 10−1 GeV (9.9)
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Figure 9. Plot of the sparticle masses separated by pairs of columns in a single messenger model

with gaugino mass unification scale Λ = 1.3 × 105 GeV for vanishing PQ deformation (left red

columns) and for a deformation of ∆PQ = 290GeV (right blue columns). For this particular value of

Λ, larger values of ∆PQ produce a tachyonic mode in the effective potential. For large deformations,

the stau (τ̃1) is the NLSP. Further, the right-handed selectron (ẽR) and smuon (µ̃R) also decrease

in mass to the point where they are comparable to the mass of the bino-like lightest neutralino

(χ̃0
1). Note also that the two Higgs-like neutralinos (χ̃0

3, χ̃0
4) and the Higgs-like charginos (χ̃±

2)

both decrease in mass in the PQ deformed theory.

where Mpl ∼ 1.2 × 1019 GeV. We find it encouraging that this range of masses for the

gravitino appears to be in accord with constraints from big bang nucleosynthesis [79]. In

this regard, it is curious to observe that for slightly larger values of the gravitino mass near

1 GeV such as has been advocated in the sweet spot model of supersymmetry breaking [21],

there appears to be a slight tension with such constraints. In any case, it would be of great

interest to study cosmological constraints on this class of models [80].

10 Conclusions

Low scale supersymmetry breaking provides a window into the high energy behavior of

local F-theory GUT models. From a bottom up perspective, correlating the scale of super-

symmetry breaking with the weak scale imposes additional restrictions on the ultraviolet

behavior of the theory. In a broad class of local F-theory models where the Higgs fields

and Goldstino chiral superfield X localize on matter curves, correlating these two energy

scales translates into the simple geometric condition that these curves must form a triple
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intersection. In this paper we have shown that X either couples to the Higgs fields through

an F-term proportional to XHuHd or through a D-term proportional to X†HuHd which is

generated by integrating out the Kalua-Klein modes on the same curve as the zero mode

X. In the former case, the resulting vev 〈X〉 = x + θ2F pushes the masses of the Higgs

fields far above the weak scale, exacerbating the µ/Bµ problem. In the latter case, the

resulting D-term realizes a variant of the Giudice-Masiero mechanism. However, the sup-

pression scale for the operator X†HuHd is typically at its largest a few orders of magnitude

below the Planck scale. This has the important consequence that in these local models,

gravity/moduli mediated supersymmetry breaking generates a µ term which is far too

large. Instead, the scale of supersymmetry breaking must be sufficiently low to solve the

µ problem so that F ∼ 1017 GeV2. Assuming that the dominant mediation mechanism is

instead gauge mediated supersymmetry breaking, bottom up considerations also determine

the value of x ∼ 1012 GeV. We have also provided an explicit configuration of intersecting

seven-branes which realizes gauge mediated supersymmetry breaking as well as a variant

of the Giudice-Masiero mechanism. In this explicit case, all of the fields of the MSSM in

addition to the messenger sector are charged under an ambient U(1) Peccei-Quinn gauge

symmetry which is typically anomalous. In fact, we have also seen that the phase of X can

potentially play the role of the QCD axion. Remarkably, purely bottom up considerations

connected to the weak scale automatically determine the axion decay constant to be of

order fa =
√

2 |x| ∼ 1012 GeV, which fits within the available window for invisible axion

models. Motivated by these considerations, we next explained why the existence of this

U(1)PQ symmetry is particularly natural in many F-theory constructions which contain E6

singularities. In addition we have shown that instanton effects in the anomalous U(1)PQ

symmetry realized on the worldvolume of a Peccei-Quinn seven-brane can break super-

symmetry. The resulting value of F is on the order of 1017 GeV2 when the scale of the

Peccei-Quinn seven-brane is close to the GUT scale. We have also seen that the D-term

potential determines x as a function of the minimal amount of flux through the curve

supporting X, and that this minimal value is x ∼ 1012 GeV, in beautiful agreement with

purely bottom up considerations. Combining all of these elements, we have also character-

ized the region of MSSM parameter space determined by this class of compactifications.

In the remainder of this section we describe some further directions of potential interest.

In this paper we have seen that there is a preferred range of energy scales available for

deformed gauge mediated supersymmetry breaking in many local F-theory GUT models.

We have also given a precise description of the region of MSSM parameter space defined

by these models. It would be of great interest to extract the collider signatures associated

with this narrow region of the MSSM parameter space.

We have also shown how higher rank enhancements in the singularity type of F-theory

GUT models can make the ‘diamond ring model’ more natural. Even though we have

sketched many elements of this setup, some issues, including how to avoid excess matter

fields from additional adjoint representation associated with the higher rank of enhance-

ment remain to be settled in this scenario. It would be important to address these issues

in future work.

One of the most elegant features of gravity/moduli mediation models is that the
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Giudice-Masiero mechanism automatically correlates the scale of supersymmetry break-

ing with the value of the µ term. On the other hand, we have also seen that in a broad

class of models, integrating out the Kaluza-Klein modes of the X field will generate a

Giudice-Masiero operator. Insofar as the mass of these heavy modes is below the Planck

scale, it is therefore natural to ask whether gauge mediation is always preferred in such

cases. Depending on the origin of the U(1)PQ gauge symmetry, there appear to be at least

two ways that gravity mediation models could still potentially yield an appropriate value

for the µ term.

When the U(1)PQ gauge symmetry originates from the worldvolume theory of seven-

branes, X and the Higgs fields most likely originate from matter curves. In this paper

we have assumed that the profile of the zero mode wave function for the X field near a

point of triple intersection is an order one number. On the other hand, depending on the

choice of signs for gauge fluxes, the local curvature of the del Pezzo surface can repel this

gauge singlet wave function away from the point of triple intersection [2]. In this case,

the coefficient of the Giudice-Masiero operator could naturally be much smaller, effectively

increasing the size of the suppression scale. In this paper we have avoided exploiting this

mechanism because it is less predictive, but it is still a viable possibility.

It is also possible that the U(1)PQ gauge symmetry does not originate from the world-

volume theory of a seven-brane. Indeed, the bulk gravity modes of a generic compactifi-

cation will typically contain several U(1) factors obtained by Kaluza-Klein reduction. In

such a scenario, though, it is less clear whether all of the matter content of the visible

and messenger sectors possess the correct U(1)PQ charge assignments to allow all required

couplings. For these models, the X field may not originate from a matter curve, but

could simply be some generic modulus of the compactification. In either case, it would be

interesting to study additional properties of such gravity/moduli mediated scenarios.
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A Higher order instanton corrections and the axion potential

In section 6 we observed that the phase ax = arg x directly couples to the QCD instanton

density. In order to solve the strong CP problem, the minimum of the effective potential

for this field must be sufficiently close to zero. In this regard, the gauged U(1)PQ symmetry

shields the axion from many contributions which could a priori have shifted the minimum

of its potential. More generally, however, instanton effects could violate this symmetry.
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In the context of the Fayet-Polonyi model, note that the leading order behavior of the

effective potential only depends on the magnitude of X, which does not generate a po-

tential for ax. But precisely because the experimental bounds on θQCD are so stringent,

subleading corrections from instanton effects could also potentially play an important role.

Such contributions can either correspond to terms in the superpotential involving just X,

or interaction terms between X and fields such as the MSSM Higgs which develop an ap-

propriate vev so that they can contribute to the minimum of the axion potential. In this

appendix we appeal to the U(1)PQ symmetry of the seven-brane theory to characterize the

form of higher order instanton corrections, and then estimate their effects on the axion

potential. We show that if present, some of these contributions can significantly alter the

minimum of the axion potential. But although considerations based on symmetry argu-

ments can constrain the form of possible contributions, they do not establish that such

terms are indeed present. To this end, we discuss potential means by which instanton gen-

erated contributions to the axion potential can remain in accord with the flatness required

to solve the strong CP problem.

A.1 Constraints from symmetries

Using symmetry arguments, we now provide a rough characterization of additional instan-

ton generated terms which involve the chiral superfields of the MSSM. Although the linear

term in X in equation (8.21) appears to violate the anomalous U(1)PQ symmetry, the in-

stanton factor q will also transform under this symmetry as well, and axion shifts provide

an important constraint on possible contributions [27]. Letting α denote the PQ charge of

q, because X has PQ charge −4, equation (8.21) implies:

α = +4 (A.1)

Letting H denote a generic Higgs field, and Φ any other MSSM chiral superfield, the corre-

sponding PQ charges are respectively −2 and +1. It follows that a candidate contribution

of the form:

W tot
inst ⊃ qkHaΦbXc (A.2)

must satisfy the constraint:

4k − 2a + b − 4c = 0 (A.3)

where a, b, c and k are non-negative integers.

A.2 Estimates on higher order corrections

We now estimate possible higher order instanton corrections to the minimum of the ax-

ion potential. The leading order contribution to the axion potential from additional su-

perpotential terms can come from terms quadratic in X such as X2 and H2X2 so that

equation (A.3) reduces to:

X2 : k = 2 (A.4)

H2X2 : k = 1. (A.5)
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As shown in detail in [27], there is no contribution to the k = 1 sector from quadratic terms

in X. Expanding to leading order in q therefore yields the X-dependant superpotential:10

W (X) = M2
PQκ1 · qX +

M2
W κH

2MPQ
· qX2 +

MPQκ2

2
· q2X2 (A.6)

where MW is shorthand for the mass scale associated with the Higgs vevs, and the κi

are moduli dependent worldvolume determinant factors which also include possible contri-

butions from a possibly position dependent axio-dilaton. Assuming that all effects from

gravity decouple, the resulting axion potential is:

Vax (ax) = VQCD (ax) +

∣∣∣∣M
2
PQκ1 · q +

M2
W κH

MPQ
· q |x| eiax + MPQκ2 · q2 |x| eiax

∣∣∣∣
2

. (A.7)

Returning to the bound of line (6.9), the minimum of Vax remains sufficiently close to zero

to solve the strong CP problem provided:

V ′′(θ0)

V ′′
QCD(0)

< 10−10 (A.8)

so that:

(
M2

PQκ1 · q
)
×
(

M2
W κH

MPQ
· q |x|

)

10−4GeV4 < 10−10 (A.9)
(
M2

PQκ1 · q
)
×
(
MPQκ2 · q2 |x|

)

10−4GeV4 < 10−10. (A.10)

This amounts to the two conditions:

|κ1κH |MPQM2
W |x| · q3 < 10−14 GeV4 (A.11)

|κ1κ2|M3
PQ |x| · q3 < 10−14 GeV4. (A.12)

Plugging in the explicit values q ∼ 5 × 10−17, MPQ ∼ 4.3 × 1016 GeV, |x| ∼ 1012 GeV,

MW ∼ 102 GeV, this requires:

|κ1κH | < 2 × 102 (A.13)

|κ1κ2| < 10−27. (A.14)

Provided κ1 and κH are not very large, the contribution from the Higgs dependent con-

tribution will not shift the axion potential by a large amount. The contribution from the

purely X sector is far more problematic. We will return to possible means by which the

coefficient κ2 could be arranged to be quite small, so as to satisfy this bound.

10In a previous version of this paper, a constant contribution from the instanton sector was assumed to

be present. A recent clarification of the analysis appearing in a revised version of [27] illustrates that when

an appropriate flux is available such that the Polonyi term is generated, then this constant shift is absent.
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On similar grounds, note that there are also instanton contributions to the axion

potential from supergravity:

Vax ⊃ − 3

M2
pl

|W (X)|2 = − 3

M2
pl

∣∣W0 + M2
PQκ1 · qX

∣∣2 , (A.15)

where here, W0 denotes a generic constant shift to the overall superpotential of the theory.

The precise value of this constant is tied up with the value of the cosmological constant,

and therefore a full discussion of this type of contribution is somewhat beyond the scope

of the present paper. Nevertheless, the condition to avoid a significant shift in the axion

potential from this contribution is:

|W0κ1|
M2

PQ |x|
M2

pl

· q < 10−14 GeV4 (A.16)

or:

|W0κ1| <
(
107 GeV

)3
. (A.17)

Thus, in order to avoid generating a large contribution to the axion superpotential, we must

assume that W0 is set by an energy scale smaller than that due to other scales appearing

in the gauge mediation sector.

To summarize the discussion above, there is a potentially significant contribution to

the axion potential from superpotential terms of the form q2X2. In addition, possible

constant shifts in the form of the superpotential can also potentially induce corrections to

the form of the axion potential. We now proceed to discuss possible mechanisms which

can rectify this issue.

A.3 Achieving a flat axion potential

The above analysis establishes that in order for the phase of X to play the role of the QCD

axion, several instanton contributions must be sufficiently suppressed. In this subsection

we discuss possible resolutions of this issue.

First consider the contribution related to W0. As alluded to below line (A.15), the

value of W0 is also closely connected with the overall value of the cosmological constant.

In keeping with the approach espoused in this paper we defer this and other issues related

to gravity to a later stage of analysis. Even so, we note that it is conceivable that a fine

tuning in W0 may be available such that this term is sufficiently small.

Next consider instanton induced contributions of the form q2X2. The primary question

is whether the coefficient κ2 can be arranged to be sufficiently small to avoid possible issues

with the disruption of the axion potential. There are in principle a few ways in which this

type of correction could be arranged, which we now discuss in turn.

One natural possibility is that the characteristic scale multiplying the various instanton

contributions might involve a suppression scale closer to Mpl rather than MPQ ∼ 4 ×
1016 GeV. To determine the relevant form of the contribution, note that the higher order

instanton contributions can be written as:

W (X) = κ1FX · X +
κ2

2

(FX · X)2

M3
+ . . . , (A.18)
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with FX ∼ 1017 GeV2, and M some suppression scale. Although local considerations

naturally suggest the value M ∼ MPQ, it is in principle possible to also consider larger

values such as M ∼ Mpl ∼ 1019 GeV. Computing the overall constraint on the flatness of

the axion potential, we now obtain the constraint:

|κ1κ2| |x|F 3
X/M3

pl

10−4 GeV4 < 10−10, (A.19)

or:

|κ1κ2| < 10−20, (A.20)

which leads to a slightly less stringent constraint on the κ coefficients.

As another possibility, it would be interesting to investigate whether a suitable class

of instanton configurations could be found such that only odd powers of q appear. In this

case, form of the instanton expansion would be of the form:

W (X) = κ1FX · X +
κ3

3

(FX · X)3

M6
+ . . . . (A.21)

The overall constraint on the flatness of the axion potential would then be of the form:

|κ1κ3| |x|2 F 4
X/M6

10−4GeV4 < 10−10, (A.22)

so that even for M ∼ 4 × 1016 GeV, we obtain:

|κ1κ3| < 10−6, (A.23)

which again involves less fine tuning in the κ’s. For M ∼ Mpl, the constraint is instead:

|κ1κ3| < 108, (A.24)

which is a far milder constraint.

In addition to the moduli dependent worldvolume determinant factors, the profile of

the axio-dilaton can also lead to an overall suppression of the κ’s. Indeed, the zero mode

contribution necessary for a bound state of Euclidean D3-branes to contribute often requires

the presence of a flux threading the worldvolume of the Euclidean three-brane. Integrating

the profile of the axio-dilaton against the instanton density of this flux, the overall position

dependence of the axio-dilaton implies that in generall, fluxes with different instanton

numbers could produce quite different suppression factors in the κ’s.

As a final possibility, it was found in [27] that in order for a Euclidean D3-instanton to

contribute to the superpotential at all, the flux threading the D3-brane must lift to a trivial

class in the threefold base B3 of an F-theory compactification. Although beyond the scope

of this paper, it would be interesting to determine whether it is possible to arrange for

a one-instanton sector to contribute, but to exclude contributions from higher instantons

due to a topological obstruction of some kind.
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[47] P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206]

[SPIRES].

[48] P.G. Harris et al., New experimental limit on the electric dipole moment of the neutron,

Phys. Rev. Lett. 82 (1999) 904 [SPIRES].

[49] M.V. Romalis, W.C. Griffith and E.N. Fortson, A new limit on the permanent electric dipole

moment of 199Hg, Phys. Rev. Lett. 86 (2001) 2505 [hep-ex/0012001] [SPIRES].

[50] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge

University Press, Cambridge U.K. (1996).

[51] T. Banks, M. Dine and M. Graesser, Supersymmetry, axions and cosmology,

Phys. Rev. D 68 (2003) 075011 [hep-ph/0210256] [SPIRES].

[52] P. Fayet, Weak Interactions of a Light Gravitino: A Lower Limit on the Gravitino Mass

from the Decay psi → Gravitino anti-Photino, Phys. Lett. B 84 (1979) 421 [SPIRES].

[53] P. Fayet, Scattering Cross-Sections of the Photino and the Goldstino (Gravitino) on Matter,

Phys. Lett. B 86 (1979) 272 [SPIRES].

[54] P. Fayet, Effects of the Spin-1 partner of the goldstino (gravitino) on neutral current

phenomenology, Phys. Lett. B 95 (1980) 285 [SPIRES].

[55] S.M. Barr, Harmless axions in superstring theories, Phys. Lett. B 158 (1985) 397 [SPIRES].

[56] S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146

[hep-th/9606086] [SPIRES].

[57] F. Cachazo, K.A. Intriligator and C. Vafa, A large-N duality via a geometric transition,

Nucl. Phys. B 603 (2001) 3 [hep-th/0103067] [SPIRES].

[58] F. Cachazo, S. Katz and C. Vafa, Geometric transitions and N = 1 quiver theories,

hep-th/0108120 [SPIRES].

[59] R. Bousso and J. Polchinski, Quantization of four-form fluxes and dynamical neutralization

of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [SPIRES].

[60] P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the

electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104 [SPIRES].

[61] P. Fayet, Supersymmetry and Weak, Electromagnetic and Strong Interactions,

Phys. Lett. B 64 (1976) 159 [SPIRES].

[62] P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and

Strong Interactions, Phys. Lett. B 69 (1977) 489 [SPIRES].

[63] P. Fayet, Relations Between the Masses of the Superpartners of Leptons and Quarks, the

Goldstino Couplings and the Neutral Currents, Phys. Lett. B 84 (1979) 416 [SPIRES].

[64] J. Polonyi, Generalization of the Massive Scalar Multiplet Coupling to the Supergravity,

Hungary Central Inst Res, KFKI-77-93 (77,REC.JUL 78).

– 64 –

http://arxiv.org/abs/0807.2006
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.2006
http://dx.doi.org/10.1016/S0370-2693(98)00494-8
http://arxiv.org/abs/hep-ph/9803432
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9803432
http://arxiv.org/abs/0807.3125
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.3125
http://dx.doi.org/10.1088/1126-6708/2006/06/051
http://arxiv.org/abs/hep-th/0605206
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0605206
http://dx.doi.org/10.1103/PhysRevLett.82.904
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,82,904
http://dx.doi.org/10.1103/PhysRevLett.86.2505
http://arxiv.org/abs/hep-ex/0012001
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-EX/0012001
http://dx.doi.org/10.1103/PhysRevD.68.075011
http://arxiv.org/abs/hep-ph/0210256
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0210256
http://dx.doi.org/10.1016/0370-2693(79)91230-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B84,421
http://dx.doi.org/10.1016/0370-2693(79)90836-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B86,272
http://dx.doi.org/10.1016/0370-2693(80)90488-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B95,285
http://dx.doi.org/10.1016/0370-2693(85)90440-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B158,397
http://dx.doi.org/10.1016/S0550-3213(97)00280-0
http://arxiv.org/abs/hep-th/9606086
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9606086
http://dx.doi.org/10.1016/S0550-3213(01)00228-0
http://arxiv.org/abs/hep-th/0103067
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0103067
http://arxiv.org/abs/hep-th/0108120
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0108120
http://dx.doi.org/10.1088/1126-6708/2000/06/006
http://arxiv.org/abs/hep-th/0004134
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0004134
http://dx.doi.org/10.1016/0550-3213(75)90636-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B90,104
http://dx.doi.org/10.1016/0370-2693(76)90319-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B64,159
http://dx.doi.org/10.1016/0370-2693(77)90852-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B69,489
http://dx.doi.org/10.1016/0370-2693(79)91229-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B84,416


J
H
E
P
0
9
(
2
0
0
9
)
0
7
9

[65] E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, Moduli stabilization with

Fayet-Iliopoulos uplift, JHEP 04 (2008) 015 [arXiv:0711.4934] [SPIRES].
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